考虑司机工作强度的数智出行平台可持续服务运营模式优化
DOI:
作者:
作者单位:

1.北京航空航天大学;2.北京航空航天大学北京

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金重大资助项目(72394374);基础科学中心资助项目(72288101);国家自然科学基金青年资助项目(72301014);国家资助博士后研究人员计划项目(GZC20233370);中国博士后科学基金资助项目(2023M730165)


Optimization for the sustainable service operation mode of the intelligent mobility platform under the workload of drivers
Author:
Affiliation:

1.Beihang University;2.北京航空航天大学

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在目前即时出行服务为主导的运营模式下:高峰时段易发生司机与乘客的供需匹配失衡的现象,导致司机工作强度较大;非高峰时段则易发生出行服务供大于需的现象,增加了司机的非生产性运营工作时长。在此背景下,部分司机为了增加运营收入,选择牺牲休息时长并长期处于疲劳驾驶状态。如何创新出行平台的可持续服务运营模式,实现以平台承担社会责任为主导,合理调控司机工作强度,并保障出行服务的经济收益,成为了亟需解决的管理难题。基于此,本研究兼顾了司机工作强度及出行服务经济收益的可持续发展,提出了以预约出行服务为主导,辅以即时出行服务的数智出行平台可持续运营模式。构建了两阶段0-1混合整数规划模型:阶段I面向预约出行乘客,定制了司机服务线路;阶段II考虑乘客失约现象,实现了即时出行需求匹配,以及司机即时出行服务工作时长优化。鉴于两阶段模型复杂度不同,针对阶段I模型,分别采用了基于列生成的启发式算法(CG-BH),以及基于自适应大邻域搜索及模拟退火的混合元启发式算法(ALNS-SA)进行求解;采用Gurobi对阶段II模型进行求解。通过数值实验,验证了两阶段模型的合理性,并对比Gurobi及CG-BH算法,指出了ALNS-SA算法在均衡求解质量及求解速率上的优越性。在灵敏度分析中,量化了司机数量及空车时长惩罚对出行服务经济收益、司机累计工作时长及其调度公平性等指标的影响。在方法实用性验证中,分析了所提出的方法可保障司机的连续驾车、休息及累计工作时长被控制在合理范围内;指出了所提出的方法可考虑司机的异质性,为其匹配工作强度范围内的个性出行服务线路;并以失约乘客出行属性为基础,拟合了即时出行服务经济收益函数,揭示了服务优质即时出行乘客产生的经济收益高于失约乘客产生的经济损失。研究为保障司机的身心健康,强化平台社会责任,并保障出行服务经济收益的可持续发展提供了理论借鉴及技术支撑。

    Abstract:

    Under the current operation mode dominated by on-demand mobility services: there is a tendency for an imbalance in the supply and demand matching between drivers and passengers during peak hours, which results in a high workload for drivers; during non peak hours, there is a tendency for mobility services to exceed demand, which increases the non productive operating hours of drivers. In this background, some drivers choose to sacrifice rest time and remain in a state of fatigue driving in order to increase operating income. How to innovate the sustainable operation mode of the mobility platform is a management problem. This innovated sustainable operation mode should achieve the platform's social responsibility as the leading factor, regulate the workload of drivers, and ensure the economic revenue of mobility services. Hence, this research proposed a sustainable service operation model for digital mobility platforms that considers the sustainable development of driver workload and mobility service revenue. It is led by a reservation mobility service and supplemented by an instant mobility service. A two-stage 0-1 mixed integer programming model was constructed: in stage-I, the driver's mobility service route was customized for scheduled passengers; in stage-II, the phenomenon of passenger absenteeism was considered, achieving on-demand mobility demand matching and optimizing the service hours. Given the different complexities of the two models, the stage-I model was solved by a column generation-based heuristic algorithm (CG-BH) and a hybrid meta-heuristic algorithm based on adaptive large neighborhood search and simulated annealing (ALNS-SA). The stage-II model was solved using Gurobi. The rationality of the two-stage model was verified by numerical experiments. A comparison was adopted among the Gurobi, CG-BH and ALNS-SA algorithms, which highlighted the superiority of the ALNS-SA algorithm in balancing solution quality and computational efficiency. In the sensitivity analysis, the influence of drivers’ number on the economy revenue, cumulative working hours and scheduling fairness was quantified. The practicality of the proposed method was also verified. Under the proposed method: the driver's continuous driving, rest, and cumulative working hours were controlled within a reasonable range; the routes with different workload can be matched with heterogeneity drivers; according to the travel attributes of defaulting passengers, an economic revenue function was fitted for real-time mobility service, and it revealed that the economic revenue generated by a high-quality instant mobility service can be higher than the economic losses incurred by the missed reservation mobility service. This research is beneficial to the physical and mental health of drivers, and provides theoretical reference and technical support for the social responsibility of the mobility platform and the sustainable development of economic revenue.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-31
  • 最后修改日期:2025-11-02
  • 录用日期:2025-11-13
  • 在线发布日期:
  • 出版日期:
您是第位访问者
管理科学学报 ® 2025 版权所有
通讯地址:天津市南开区卫津路92号天津大学第25教学楼A座908室 邮编:300072
联系电话/传真:022-27403197 电子信箱:jmsc@tju.edu.cn