基于独立成分分解的多元波动率模型
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Multivariate volatilities modeling based on independent comp
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用独立成分分解(ICA)提出了一类新的多元波动率模型——IC-GARCH模型.通过研究上海A、B股以及亚洲5个股票市场等两个真实数据的例子,进一步分析比较了该模型与Morgan在Riskmetrics ^TM中使用的EWMA模型和基于主成分分解的O-GARCH模型的拟合效果

    Abstract:

    Multivariate volatility model play an important role in portfolio construction, asset pricing and risk management. In practice, since a large number of assets are considered simultaneously, the two most common models are the exponential weighted moving average (EWMA) model suggested in J.P. Morgan' s RiskmetricsTM and orthogonal GARCH (O-GARCH) model based on principal component analysis (PCA) of the return series. However, the assumptions used in both models are too restrictive. For instance, principal components (PCs) are unconditionally uncorrelated but not necessarily conditionally correlated, so their conditional covariance matrix may not be diagonal and O-GARCH model is not reliable in this sense. This paper puts forward a new multivariate volatility model, i.e., IC-GARCH model, based on the so-called independent component analysis (ICA). It is expected that the conditional covariance matrix of ICs may look more like a diagonal one than that of PCs, which hopefully can remedy the defect of O-GARCH model. Two real data sets are used to illustrate the power of IC-GARCH model. The results from two mis-specification tests both demonstrate the advantage of IC-GARCH model over EWMA and O-GARCH models

    参考文献
    相似文献
    引证文献
引用本文

王明进 陈奇志.基于独立成分分解的多元波动率模型[J].管理科学学报,2006,9(5):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
您是第位访问者
管理科学学报 ® 2024 版权所有
通讯地址:天津市南开区卫津路92号天津大学第25教学楼A座908室 邮编:300072
联系电话/传真:022-27403197 电子信箱:jmsc@tju.edu.cn