基于Probit回归的小企业债信评级模型及实证
DOI:
作者:
作者单位:

作者简介:

迟国泰( 1955—) ,男,黑龙江海伦人,博士,教授,博士生导师. Email: chigt@ dlut. edu. Cn

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目(71171031;71471027) ; 国家自然科学基金青年科学基金资助项目( 71201018;71503199) ; 教育 部人文社会科学研究青年基金资助项目( 11YJC790157) ; 辽宁经济社会发展重点课题资助项目(2015lslktzdian-05) ; 辽宁省博士启动基金资助项目( 20131017) ; 河北省自然科学基金青年科学基金资助项目(G2012501013) ; 教育部科学技术研究项目(2011 - 10) ; 中国银监会银行业信息科技风险管理项目( 2012 - 4 - 005) ; 大连银行小企业信用风险评级系统与贷款定价项目( 2012 - 01) ; 中国邮政储蓄银行总行小额贷款信用风险评价与贷款定价资助项目( 2009 - 07). 本文入选“第十二届金融系统工程与风险管理年会”优秀论文( 山西大学,2014 年 8 月).


The debt rating for small enterprises based on Probit regression
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    小企业债信评级系指评价一笔小企业的债务信用资质的高低和债务违约损失率的大小。它事关银行贷款的风险管理以及合格的小企业能否得到融资。因此、债信评级的指标必须能直接鉴别小企业的违约状态。以等级评分和排序为目的的现有的信用评级体系并不评价一笔债务违约损失率大小,现有的信用评级体系也没有任何证据表明其评级指标体系与企业违约状态的鉴别能力有关。本研究根据指标对违约状态鉴别能力的大小遴选指标体系,建立了小企业债信评级体系。本文的创新与特色一是在偏相关系数大于 0.7、反映信息重复的一对高度相关的指标中,删除F值小、对小企业违约状态判别能力弱的指标,既避免了第一次筛选后评级指标体系的信息冗余、又避免了误删对违约状态影响大的指标。改变了现有研究评级体系指标的遴选与指标违约状态的鉴别能力无关的状况。二是通过求解违约状态变量与评价指标之间Probit 回归方程的回归系数 β 和回归系数的标准误差 SEβ,构建Wald 统计量对回归系数β的显著水平进行检验,剔除对小企业违约状态影响小的、回归系数β不显著的指标,保证了第二次筛选出的指标能显著区分企业的违约状态。三是研究表明本文构造的指标体系的感受型曲线ROC 的面积AUC大于0.9,不仅保证单个指标能有效区分违约状态,同时确保了整体构建的指标体系对违约状态具有极强的鉴别能力。四是研究结果表明,满足信用等级越高、违约损失率越低的小企业债信评级指标体系的非财务指标权重为 56% 。五是通过对 1 231 笔小企业贷款数据进行实证,结果表明:速动比率、总资产增长率、行业景气指数等23 个指标能够显著区分小企业的违约状态。

    Abstract:

    Debt rating of small enterprises means a system that evaluates the size of a small enterprise’s credit level and LGD (Loss Given Default) . It concerns the risk management of bank loans and whether small enterprises can get financing. Therefore, the indicators of credit rating must be able to identify the status of non-compliance of small enterprises. Existing credit rating system, aiming to rate scale and sort, does not evaluate the size of a debt LGD, and does not give evidence that its rating system is relevant to identify non-compliance. This article selects a index system according to the ability to identify the default status of enterprises, and establishes a credit rating system of small enterprises. This article has some innovations and features. Firstly, the paper deletesan index whose F-value is small and whose ability to distinguish the status of non-compliance of small enterprises is weak between one pair of highly related indicators which have partial correlation coefficients greater than 0. 7 and reflect the duplication of information. This avoids information redundancy of the rating system after first section and at the same time avoids mistakenly deleting the index that has a big influence on the status of non-compliance. This paper improves the situation that existing credit rating system’s selection is unrelated to the ability to identify non-compliance. Secondly, the paperbuilds the Wald statistic to test for the significant of the Probit regression coefficient, β, through solving the regression coefficient, β, and the standard error, SEβ, of the regression coefficient between the default state variables and evaluation, and deletes the index that has a small influence on the status of non-compliance and whose regression coefficient, β, is not significant. The index can distinguish significantly the status of non-compliance of enterprises after the second selection. Thirdly, the AUC area of the indicator system’s experience curve built by this paper is greater than 0. 9, and this guarantees the index system has a strong identification ability for the status of non-compliance. Fourthly, the results show the weight of the non-financial indicators, for small enterprises having a higher the credit rating and lower LGD, in the credit rating system is 56%. Finally, the empirical analysis for 1 231 small enterprises shows there are 23 indicators, involving the quick ratio, total asset growth, industry sentiment index, which can be used to distinguish the status of non-compliance of small enterprises.

    参考文献
    相似文献
    引证文献
引用本文

迟国泰,张亚京,石宝峰.基于Probit回归的小企业债信评级模型及实证[J].管理科学学报,2016,19(6):136~156

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-04-12
  • 出版日期:
您是第位访问者
管理科学学报 ® 2024 版权所有
通讯地址:天津市南开区卫津路92号天津大学第25教学楼A座908室 邮编:300072
联系电话/传真:022-27403197 电子信箱:jmsc@tju.edu.cn