市场情绪、话题集中度与系统性金融风险——基于文本大数据的实证研究
DOI:
作者:
作者单位:

1.中山大学;2.北京大学国家发展研究院

作者简介:

通讯作者:

中图分类号:

基金项目:


Market Sentiment, Consensus and Systemic Financial Risk:Empirical Research based on Textual Big Data Analysis
Author:
Affiliation:

1.Sun Yat-sen University;2.National School of Development, Peking Universtity

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    新冠肺炎疫情爆发以来,全球经济持续动荡,大规模的市场恐慌在短期内导致金融风险的加速积聚,最终引发了国际股票市场的剧烈波动。由此可见,市场舆情监控与投资情绪引导,对于维护金融稳定至关重要。2021年8月召开的中央财经委员会第十次会议更是强调,“要统筹做好重大金融风险防范化解工作,……,做好金融市场舆情引导”。有鉴于此,本文首次结合前沿的文本大数据分析方法,综合历年《中国金融稳定报告》与多种权威新闻报道,基于市场情绪对我国的系统性金融风险进行有效测度,并利用文本向量的余弦相似度,衡量新闻信息的话题集中度。分析结果显示,投资情绪与金融市场动态、宏观经济走势密切相关,在国际金融危机、欧洲主权债务危机、中美贸易战以及新冠疫情爆发时期,市场情绪指数出现了急剧下降。在此基础上,我们进一步结合非线性格兰杰因果检验和累积脉冲响应等多种研究方法,对市场情绪、话题集中度的风险预测能力进行了深入分析。实证结果表明,金融市场中投资情绪趋于负面,新闻话题集中度提升,均意味着系统性金融风险的积聚。与传统的金融风险指标相比,基于文本大数据分析的金融风险测度包含了更多的“增量信息”,能够显著提升对金融风险的预测能力。最后,我们基于《中国金融稳定报告》的词云分析,有效识别了近年来的重点金融风险领域。在得出富有启发意义结论的基础上,我们对资本市场中的投资情绪正确引导,以及如何基于文本大数据分析构建舆情监控与风险防范机制提出了若干建议,从而为“十四五”时期中国经济的高质量发展创造安全稳定的金融环境。

    Abstract:

    Since the outbreak of COVID-19 epidemic, the global economy has continued to be turbulent. The large-scale market panics have led to an accelerated accumulation of financial risk in a short period of time, which triggered violent fluctuations in the international stock market. Hence, market sentiment monitoring is vital to maintaining financial stability. In this context, this paper effectively measures China""s systemic risk by combining text sentiment with topic concentration. Specifically, we construct a sentiment index, and use the cosine similarity of the text vector to measure the topic concentration, according to multiple authoritative news reports and “China Financial Stability Report”. The results show that the sentiment index is closely related to financial risk and macroeconomic fluctuations. During the international financial crisis, the European sovereign debt crisis, the Sino-US trade war, and the outbreak of the COVID-19 epidemic, the sentiment index has declined sharply. We further discuss the prediction ability of sentiment index and topic concentration by using correlation analysis, nonlinear Granger causality test, regression analysis and impulse response. We find a positive relationship between market sentiment and systemic risk. And the improvement of topic concentration means the accumulation of potential risk. In addition, compared with traditional risk indicators, the systemic financial risk index based on textual analysis contains more incremental information, which can significantly improve the out-of-sample forecasting ability for financial risks. Finally, according to the word cloud analysis of “China Financial Stability Report”, we identify the key financial risk areas in recent years. On the basis of above findings, we put forward several suggestions on how to guide investment sentiment, and how to build a public opinion monitoring and risk prevention mechanism based on textual analysis, so as to create a more stable financial environment during the 14th Five-Year Plan period.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-20
  • 最后修改日期:2022-01-21
  • 录用日期:2022-05-09
  • 在线发布日期:
  • 出版日期:
您是第位访问者
管理科学学报 ® 2025 版权所有
通讯地址:天津市南开区卫津路92号天津大学第25教学楼A座908室 邮编:300072
联系电话/传真:022-27403197 电子信箱:jmsc@tju.edu.cn