大数据驱动的决策范式转变—以个性化O2O即时物流调度为例
DOI:
作者:
作者单位:

1.中央财经大学商学院;2.清华大学工业工程系;3.浙江大学管理学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金重大研究计划培育项目(91646125),国家自然科学基金项目面上项目(72172169),中央高校基本科研业务费专项资金资助项目


Paradigm shift for big data-driven decision making – New paradigm for O2O on-demand logistics
Author:
Affiliation:

1.Department of Supply Chain and Operations Management,Central University of Finance and Economics;2.Department of Industrial Engineering,Tsinghua University;3.School of Management,Zhejiang University,Hangzhou

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    大数据环境下传统的决策范式正转变为基于数据的决策范式,本文以O2O即时服务这种新型商业模式为情景,研究大数据驱动的新决策范式下的O2O即时物流调度模型。本文跨域融合物流部门、其他运营部门以及外部环境信息构成全景式数据,同时放宽传统决策范式的经典假设,实现从无差异化配送时间到个性化配送时间的转变,以及需求服从先验分布到考虑未来需求时空属性的转变。本文融合机器学习和运筹优化方法,实现新决策范式下的O2O即时物流调度模型。在预测层面,构建个性化众包配送时间预测模型和基于订单集时空相似性的需求场景预测算法;在决策层面,同时考虑个性化预测模型的点估计及其不确定性,并考虑未来订单集的时空分布,构建考虑预测不确定性的调度模型,同时设计同步预测和决策算法求解。本文与中国主流的O2O商超平台合作,通过基于真实数据的模拟仿真,验证了新决策范式下的O2O即时物流调度模型的可行性和有效性。相较于传统的决策范式,本文提出的模型能实现更精准的供需匹配,降低延误订单数、平均配送时间和配送成本。

    Abstract:

    The rapid development of big data has shifted the traditional decision-making to data-driven decision-making. This research aims to propose an O2O on-demand logistics management model based on the new big data-driven paradigm. This model incorporates different data sources from the internal logistics departments, other operations departments and external environment to form a panoramic dataset. Based on this, the premised assumptions of the traditional decision-making paradigm can be relaxed, and two assumption transformations are realized: from the consistent delivery time to personalized delivery time, and from the prior demand distribution to the temporal-spatial demand distribution. This research aims to realize the personalized O2O on-demand delivery management by applying both machine learning and operations research technologies. More specifically, a personalized delivery time forecast model and a scenario-based demand forecast algorithm are proposed. The point estimate and forecast uncertainty of the delivery time forecast model, and the future temporal-spatial demand distribution of the demand forecast model are incorporated into the decision-making model for O2O on-demand logistics systems. A forecast-while-optimize algorithm is also developed to optimize the decision-making model based on the feature-dependent predictions. This research verifies the feasibility and effectiveness of the O2O on-demand logistics management model based on the new paradigm by analyzing a real dataset from one of the largest O2O platforms in China. Compared with the traditional mode, the model based on the big data-driven paradigm can precisely match the highly uncertain demand and supply, and reduce the number of delayed orders, average delivery time and delivery cost.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-14
  • 最后修改日期:2023-01-04
  • 录用日期:2023-01-05
  • 在线发布日期:
  • 出版日期:
您是第位访问者
管理科学学报 ® 2025 版权所有
通讯地址:天津市南开区卫津路92号天津大学第25教学楼A座908室 邮编:300072
联系电话/传真:022-27403197 电子信箱:jmsc@tju.edu.cn