试验设计及参数优化的LS-SVR显著性因子筛选
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对最小二乘支持向量回归机(LS-SVR)应用于试验设计建模及参数优化而产生的可解释性差、难以识别显著性影响因子等不足,提出一种适用于LS-SVR的拟合不足检验及显著性因子筛选方法.首先在重复性试验设计条件下,将LS-SVR拟合模型的“残差平方和”分解为“拟合不足平方和”与“纯误差平方和”;进而给出了“拟合不足均方”与“纯误差均方”比值的近似非中心F-分布,构造出拟合不足检验的方差分析表;在此基础上,提出一种两阶段的显著性因子筛选方法,通过考察某个因子(组合)移除后模型拟合不足显著性的变化,来推断该因子(组合)显著性.仿真研究与实证表明,所提方法不仅能够增强LS-SVR的统计可解释性,有效识别出显著性因子;而且可以得到预测性能更优的简化模型;有助于提升试验设计建模及参数优化效率,降低质量改进成本.

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

崔庆安,崔楠.试验设计及参数优化的LS-SVR显著性因子筛选[J].管理科学学报,2023,(12):42~61

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-06
  • 出版日期:
您是第位访问者
管理科学学报 ® 2024 版权所有
通讯地址:天津市南开区卫津路92号天津大学第25教学楼A座908室 邮编:300072
联系电话/传真:022-27403197 电子信箱:jmsc@tju.edu.cn