乡村振兴背景下电商直播对农产品销售的影响:基于机器学习因果森林模型的实证研究
DOI:
作者:
作者单位:

1.南京大学数字经济与管理学院;2.兰州大学管理学院;3.清华大学经济管理学院

作者简介:

通讯作者:

中图分类号:

F724.6

基金项目:

国家杰出青年科学基金,国家自然科学基金资助项目,清华大学经济管理学院“影响力”提升计划项目


The Impact of Live Streaming Selling on Rural Product Sales under Rural Revitalization: An Empirical Study Based on the Machine Learning Causal Forest Model
Author:
Affiliation:

1.School of Digital Economy and Management, Nanjing University;2.School of Management, Lanzhou University;3.School of Economics and Management, Tsinghua University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘要:电商直播为农村电商卖家提供了一种全新的产品直销渠道,扶持农产品电商直播已成为数字化助力乡村振兴的新模式。本研究基于信号理论,利用中国某大型电商平台独特面板数据,通过匹配平台卖家的直播采纳和农产品销售数据,定量分析了电商直播在农产品销售中的应用效果及其异质性影响。本研究(1)首次系统揭示了电商直播对农产品销售的因果效应及其边界条件;(2)创新性地识别了农产品地域正宗性、品类差异(观赏类vs.食用类)以及主播类型(自营vs.第三方)等关键调节变量;(3)采用前沿的机器学习方法——因果森林模型,有效控制了卖家选择特定农产品进行电商直播的自选择偏差,相比传统方法具有更强的稳健性。研究发现:相比于传统电商销售,电商直播对农产品销售数量和销售收入均有显著正向影响。对于前期销量更高的农产品、具有地域正宗性的农产品以及观赏类农产品(相较于食用类农产品),电商直播对其销售的正向影响更大。此外,拥有更多关注者的主播直播销售表现更好,自营主播(卖家自产自播)的直播销售效果优于第三方主播(同时为多个卖家直播销售)。本研究结论为农村电商卖家、电商平台以及政策制定者提供了有益的管理实践启示。

    Abstract:

    Abstract: Live streaming selling provides a new direct sales channel for numerous rural e-commerce sellers. Supporting live streaming selling for agricultural products has also become a new model for digital empowerment of rural revitalization. Based on Signaling Theory, this study utilizes a unique panel data from a large e-commerce platform in China to quantify the sales effects and heterogeneous impacts of live streaming selling on agricultural products by matching the live streaming adoption behavior of platform merchants with agricultural product sales data. The empirical model employs a state-of-the-art machine learning method, the causal forest model, to control for the self-selection bias of sellers choosing to live stream certain agricultural products. The core innovations of this study are: (1) It is the first to systematically reveal the causal effects of live streaming on agricultural product sales and their boundary conditions; (2) It innovatively identifies key moderating variables such as regional authenticity of agricultural products, product category differences (ornamental vs. edible), and streamer types (self-operated vs. third-party); (3) It employs the cutting-edge machine learning method—causal forest model, which effectively controls for the self-selection bias of sellers choosing specific agricultural products for live streaming, demonstrating stronger robustness compared to traditional methods. The study finds that, compared to traditional e-commerce, live streaming selling has a significant positive impact on both the sales volume and revenue of agricultural products. The positive impact of live streaming selling on agricultural product sales exhibits significant heterogeneity across different types of agricultural products and streamers. The positive impact of live streaming selling on sales is greater for agricultural products with higher prior sales, regionally authentic products, ornamental agricultural products (compared to edible agricultural products), and for streamers with more followers and self-operated streamers compared to third-party streamers. This study provides important managerial insights for rural e-commerce sellers, e-commerce platforms and policymakers.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-03
  • 最后修改日期:2025-06-07
  • 录用日期:2025-06-28
  • 在线发布日期:
  • 出版日期:
您是第位访问者
管理科学学报 ® 2025 版权所有
通讯地址:天津市南开区卫津路92号天津大学第25教学楼A座908室 邮编:300072
联系电话/传真:022-27403197 电子信箱:jmsc@tju.edu.cn