基于最优临界点的债券违约动态预警研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Dynamic early warning of bond default based on optimal threshold
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    债券违约风险预警就是根据企业财务因素、非财务因素和外部宏观因素对未来的债券违约状态做出预测.对于不同的变量组合,违约预测的效果是不同的,势必存在一个最优的指标组合,能够最大限度地减少违约预测误差.对于不同的违约判别临界点,其违约预测效果不同,势必存在一个最优的违约判别临界点,最大限度地把违约与否的债券区分开来.本研究采用随机森林模型进行指标组合的遴选,采用Logit回归建立违约预测模型.本研究的创新,一是在最优指标组合的遴选上,对于不同的决策树棵数,在第二类错误最小的前提下,通过AUC最大反推得到了一个最优的随机森林;通过对最优随机森林中节点指标的不同组合的对比,找到AUC最大的一个指标组合.二是在最优违约判别临界点的确定上,以第一类错误与第二类错误的加权之和最小为目标函数,反推逻辑回归的最优临界点.三是本模型的预测精度高于支持向量机模型、梯度提升迭代决策树、神经网络等7种流行的大数据预测模型.基于2014年—2018年中国上市公司发行的债券数据,实证研究表明,对中国债券的中短期违约预测均有影响的关键指标为:“货币资金/短期债务”、“净利润”、“发行主体发行债券数量”、“行业景气指数”和“行业企业家信心指数”等五个指标.对短期违约预测有影响的关键指标为:“货币资产”、“速动比率”、“固定资产投资价格指数”、“货币供应量M0”.对中期违约预测有影响的关键指标为“发行主体注册资本”、“债券到期偿还量”、“债券到期指数”.

    Abstract:

    Early warning of bond default risk is to predict the future bond default status based on the enterprise’s financial factors, nonfinancial factors, and external macro factors. For different combinations of variables, the effect of default prediction is different; there must be an optimal combination of indicators, which can minimize the error of default prediction. For different thresholds, the effect of default prediction is different, and there is bound to be an optimal threshold of default judgment, which can distinguish between the bonds that default from those that do not to the greatest extent. This paper uses the random forest model to select the feature combination, and studies the default risk of bonds based on Logit model. The first contribution of this paper is in the optimal feature selection. Under the premise of the minimum 〖WTBX〗TypeII Error〖WTBZ〗, an optimal random forest is obtained by maximizing the 〖WTBX〗AUC〖WTBZ〗 for different numbers of decision trees. According to the ranking of the importance of indicators, the optimal feature combination can be obtained by forward selection to maximize 〖WTBX〗AUC〖WTBZ〗. The second contribution is in the determination of the optimal default judgment threshold. Taking the minimum weighted sum of the 〖WTBX〗TypeI Error〖WTBZ〗 and 〖WTBX〗TypeII Error〖WTBZ〗 as the objective function, the optimal threshold of logical regression is deduced. The third is the prediction accuracy of this model is higher than popular big data prediction models. Based on data from bonds issued by Chinese bonds listed companies from 2014 to 2018, the empirical research shows that the key indicators affecting China’s medium and shortterm default prediction are: Monetary capital / shortterm debt, net profit, the number of bonds issued by issuers, industry prosperity index, and industry entrepreneur confidence index. The key indicators affecting shortterm default prediction are: Monetary assets, quick ratio, fixed asset investment price index, and money supply 〖WTBX〗M〖WTBZ〗0. The key indicators that have an impact on the mediumterm default forecast are registered capital of the issuer, repayment amount of bonds at maturity, and bond maturity index.

    参考文献
    相似文献
    引证文献
引用本文

迟国泰,杨佳琦,周颖.基于最优临界点的债券违约动态预警研究[J].管理科学学报,2024,(11):136~158

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-01-20
  • 出版日期:
您是第位访问者
管理科学学报 ® 2025 版权所有
通讯地址:天津市南开区卫津路92号天津大学第25教学楼A座908室 邮编:300072
联系电话/传真:022-27403197 电子信箱:jmsc@tju.edu.cn