生鲜电商用户在线选择行为研究——考虑评论的影响效用
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Online choice behavior for fresh e-commerce customers: Considering the social influence of reviews
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    生鲜电商要实现精益经营,需要及时准确地挖掘用户需求.因此,面对新零售和互联网大数据背景下的生鲜农产品线上消费场景,本研究对在线异质用户的隐性需求及偏好进行了挖掘和研究.首先通过自然语言处理技术挖掘评论中的用户需求特征,其次结合用户属性及生鲜农产品属性(产地、重量、果径等),考虑评论隐反馈信息对用户购买决策行为的影响,构建了融合评论影响效用的Mixed Logit模型,并对用户在线选择行为进行了分析.最后,本研究抓取了生鲜电商平台评论数据进行算例分析.研究发现:生鲜农产品属性变量(显性需求)不能完全充分地捕捉用户需求,部分隐性需求隐含在其他用户的评论中,影响用户的选择行为.与不考虑评论影响效用的模型对比,纳入评论隐反馈信息所建立的考虑评论影响社会效用的生鲜电商用户选择模型具有更好的解释性,验证了本研究模型对于研究在线用户选择行为的实际价值与有效性.为生鲜电商实现精准营销、经营策略调整、产品优化等决策提供思路.

    Abstract:

    To achieve a lean operation, fresh e-commerce enterprises need to grasp users’demands timely and accurately. This research aims to find consumers’heterogeneous preferences and implicit demands from reviews of fresh products on e-commerce platforms. Considering the social influence of implicit feedback information from reviews on customers’ purchasing decisions, this study designs a Mixed Logit model incorporating the impact of reviews on customers’ utility to simulate the different purchase behaviors and capture customers’ implicit requirements and heterogeneity effectively. Firstly, this research collects the online reviews of fresh products and then adopts natural language processing (NLP) technology to extract the customers’ implicit requirements from the reviews. Secondly, the implicit requirements are combined with customer attributes and fresh product attributes to construct the utility function and establish the customers’ choice behavior model. Finally, an example analysis is conducted based on the actual data from a fresh product e-commerce platform. The results show that the explicit attributes of fresh products cannot fully capture customers’ demands, and more invisible demands are hidden in other customers’ comments, which would affect the purchase decisions of potential customers. By incorporating the implicit feedback information in online reviews, the discrete choice model which considers the social impact of reviews is well interpreted and suitable for purchasing scenarios of fresh product e-commerce platform. This model shows a higher degree of goodness of fit compared with the model without considering the social influence of reviews. Thus, the implicit feedback in online reviews has been demonstrated to present more practical value for influencing customers’ choice behavior. The proposed method could provide valuable insights for fresh product e-commerce enterprises on precision marketing, business strategy adjustment, and product optimization.

    参考文献
    相似文献
    引证文献
引用本文

何勇,陈静,李姗姗,陈旭辉.生鲜电商用户在线选择行为研究——考虑评论的影响效用[J].管理科学学报,2025,(5):70~83

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-22
  • 出版日期:
您是第位访问者
管理科学学报 ® 2025 版权所有
通讯地址:天津市南开区卫津路92号天津大学第25教学楼A座908室 邮编:300072
联系电话/传真:022-27403197 电子信箱:jmsc@tju.edu.cn