基于宏观大数据的CPI预测及方法比较
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


CPI forecast and model comparison in a data-rich environment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    大数据时代的到来为CPI的预测带来了前所未有机遇和挑战.充分利用高维数据信息,发展可解释的机器学习预测模型,对于理论发展和现实实践均具有重要意义.为此,本研究构建了包含9个类别239个变量的中国月度宏观经济数据库,并对比了包含传统时间序列模型、正则化回归、因子模型和集成算法等在内的13个模型在大型数据集下对CPI的预测能力.进一步地,基于控制变量的思想构建了机器学习衍生算法,对相关的结果进行解释和机制分析.结果表明,随机森林和XGBoost具有良好的预测效果,尤其是在中长期预测中表现出了较大优势.通过进一步的分析发现它们的优势在于非线性的模型设定和非稀疏的变量处理,前者使得模型中的变量关系更加符合实际,而后者能够充分地利用大数据信息.同时,这两个模型也筛选出了自回归项、价格、就业等在CPI预测中更加合理且重要的变量类别.

    Abstract:

    The advent of the Big Data era has brought unprecedented opportunities as well as challenges to CPI forecasting. Making full use of high-dimensional data and developing interpretable machine learning methods for forecasting are of great significance both theoretically and practically. Thus, this paper constructs a large monthly macroeconomic dataset for China, which consists of 239 variables across 9 categories. Based on this large dataset, the paper evaluates the forecasting performances of 13 common methods for CPI, including traditional time series models, regularized regressions, factor models, and ensemble methods. Further, based on the idea of control variables, a derivative algorithm for machine learning is constructed to explain the results and conduct the mechanism analysis. According to the results, random forest and XGBoost exhibit superior predictive performance, especially in the medium and long-term horizons. Further investigation proves that the non-linearity and non-sparsity of ensemble methods play a vital role for better forecast precision. Meanwhile, according to the variable importance measures of the two ensemble methods, variables in the autoregressive, price, and employment categories contribute a large portion of predictive power, which is in line with economic theory and stylized facts.

    参考文献
    相似文献
    引证文献
引用本文

郑挺国,范馨月,靳炜.基于宏观大数据的CPI预测及方法比较[J].管理科学学报,2025,(8):1~16

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-23
  • 出版日期:
您是第位访问者
管理科学学报 ® 2025 版权所有
通讯地址:天津市南开区卫津路92号天津大学第25教学楼A座908室 邮编:300072
联系电话/传真:022-27403197 电子信箱:jmsc@tju.edu.cn