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Fig. 1 The evolutionary strategies of knowledge network



11 : — 125 —

2.2
2
2.1 2. 3
2 3
1) 2 3
12) ;3)
12
5 ( 2( a)
3(a))
2.5. 1 000
5
gl 045 01 0 0.07q . 2(b) 3(b)
Eb.45 1 07 0 0.018
R=p00.1 07 1 0.20 0.0l0] (
0 0
0o 0 0.2 1 0.50p )
.07 0.01 0.01 0.50 1 U
(01 ;
u,(t)
(200 400 aB S
200 0. 05.
(a) (b)
2

Fig. 2 The knowledge growth by self-study in the network equilibrium strategy
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Fig. 3 The knowledge growth by selfstudy in the network growth strategy
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Fig. 4 The knowledge accumulation in the network equilibrium strategy
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Fig. 5 The knowledge accumulation in the network growth strategy
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Modeling knowledge accumulation on the dynamic complex network

ZHANG Weir XU Di
School of Management Xiamen University Xiamen 361005 China

Abstract: Structural changes on the complex network and the resulting knowledge and information flow varia—
tion are hot issues of current study. To analyze the accumulation process of the different knowledge on the het—
erogeneous complex network the corresponding network model as well knowledge accumulation model is for—
mulated in this paper. The change strategies of the heterogeneous knowledge network are divided into two cate—
gories. The first is equilibrium strategy according to which the average account and the strength of connecting
links between agents on the knowledge network remain fixed during the network evolution process. The second
is the network growth strategy which refers to that the connecting links between agents of the knowledge net—
work are gradually increased. Correspondingly the cumulative amount of all kinds of knowledge is categorized
into two parts. The first part is the selfdearning knowledge that is characterized by an S-shaped growth curve.

The second is the external knowledge calculated according to the correlation matrix and the neighbor relation—
ships. Simulation results show that a higher correlation degree of knowledge gets a faster flow speed in the net—
work” s growth strategy and there is no evidence in the network” s balance strategy. Moreover the variance of
knowledge in the network” s growth strategy is smaller than that in the networks balance strategy.

Key words: complex network; heterogeneous network structure; knowledge accumulation; correlation degree

of knowledge



