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miny, _s C,.(i R,) i S, j EC-ALNS
k ( EC-CPLEX)
0( n%) EC-CPLEX Box split—
@, ting MATLAB YALMIP
Box splitting CPLEX
CA. ; B. Intel Core i540210U 1.60GHz
Box Pareto
Pareto ALNS Solomon VRPTW
N RSPSP
:C1.C2.R1.R2.RC1 RC2 N
; N C1.R1.RC1 C2.
; S R2.RC2 .w 5 2
20, 15
EC-CPLEX  EC-ALNS 10
4 ® 1 . HV ( hypervol-
ume)
4.1 * HV 10
1 EC-ALNS RSPSP
Table 1 Results of the EC-ALNS algorithm and the exact method for solving small-scale RSPSP
EC-CPLEX EC-ALNS
E E E " EC A Gapyi A Gapay A " EA
i /2 Py | G Hv T /i /3 Pa G, HV Ty
[ % [ %
C101 |1371.63| 14.21 6 8 |0.0772 | 438.15 | 1380.57 | 0.65 14.21 0.00 6 10 0.062 3 | 168.46
C201 |1278.79| 37.75 6 8 0.247 8 | 569.07 1278.79 | 0.00 37.75 0.00 6 11 0.2317 | 177.94
R101 |1569.41| 28.81 4 6 0.007 5 | 343.07 1 569.41 0.00 28.81 0.00 4 7 0.007 5 | 123.45
R201 |1 408.40 | 50.02 4 8 0.068 5 | 729.41 1409.27 | 0.06 50.02 0.00 4 12 0.053 8 | 235.88
RC101 |1 508.04 | 29.86 8 10 | 0.1819 | 551.34 | 1508.04 | 0.00 29.86 0.00 8 11 0.1819 | 149.32
RC201 |1 352.29| 49.44 7 9 0.104 7 | 631.47 1352.29 | 0.00 49.44 0.00 7 12 0.104 7 | 175.69
0.114 6 | 543.75 0.12 0.00 11 0.107 0 | 171.79
AN SisSa T EC-ALNS 10 Sis
5 . pEopt EC-CPLEX EC-ALNS C, TEC  TEA
() Gapyg = (f} 1) /T x100% Gapyy = (f5 =f3) /fy x100% .
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Box splitting ( ECALNS) Pareto ALNS
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10 ~20 HEFVRPTW
EC-ALNS ©, 2 . HEA ( hybrid
ALNS evolutionary algorithm) ~ Koc %
100 HFVRPTW
2 ALNS HFVRPTW
Table 2 Performance of ALNS algorithm for solving large-scale HFVRPTW problems
HEA BAC ALNS Gapyyy Gapy,
SII;[EA SEAC Si—}lLNS S;\ILNS 1% 1%

€101 B 8 828.94 B! 8 828.94 B! 8 828.94 8 828.94 0.00 0.00

C102 AV 7 080.17 AV 7 106.53 AP 7 113.40 7155.23 0.47 0.10

€103 AL 7079.21 AP 7079.22 AP 7176.07 7211.79 1.37 1.37

C104 AP 7 075.06 AP 7 097.85 AV 7 199.45 7 325.41 1.76 1.43

€201 A*B! 6 082.38 A*B! 6 082.38 A*B! 6102.26 6144.78 0.33 0.33
€202 Alc? 7 618.62 Alc? 7 639.79 AlC? 7 636.74 7 639.33 0.24 -0.04
€203 c*p! 7 303.37 ! 7 401.30 ! 7 385.28 7 400. 55 1.12 -0.22
€204 A’ 5 677.66 A’ 5935.47 A’ 5 693.28 5708.24 0.28 -4.08
3.98 — 1.95 0.70 -0.14

R101 B¢ p! 4355.41 A'BOC! D! 4417.59 A'BC!' D! 4 455.40 4546.21 2.30 0.86

R102 B*CBD? 4356.44 A'B2CMD? 4262.97 B3CHDp? 4 359.69 4391.25 0.07 2.27

R103 BeCH 4 080. 16 BeC' 4.092.43 BeC'S 4187.53 4213.27 2.63 2.32

R104 B7c™ 3954.72 B°CB 4024.82 B7CH 4081.94 4116.98 3.22 1.42
R201 A’ 3 448.76 A’ 3539.83 A’ 3514.88 3 557.39 1.92 -0.70
R202 A’ 3308.16 A’ 3 441.36 A’ 3385.92 3 409.17 2.35 -1.61
R203 A*B! 3382.39 A*B! 3586.58 A*B! 3438.84 3496.23 1.67 -4.12
R204 A® 3018.14 A’ 3 145.57 A® 3 068.83 3195.61 1.68 -2.44

RC101 A*B7C7 5162.28 ASB7C7 5298.36 ASB7C7 5305.29 5349.65 2.77 0.13

RC102 A?BOCE 5018.05 ABOCB 5148.72 A*BCE 5158.97 5 180.20 2.81 0.20

RC103|  A"B?(C? 4.926.55 AlB2c8 4.998.63 AB%C? 5144.77 5193.91 4.43 2.92

RC104| A’B"(C’D! 4.995.91 A’BBCPD! 5 050.02 AZBECD! 5 168.46 5214.29 3.45 2.35
RC201 C1E3 5344.47 C'E? 5395.99 C'E? 5313.25 5409.78 -0.58 -1.53
RC202| A'C'D'E? 4 856.02 AlC'D'E? 5 166.76 A'CID'E? 5156.71 5229.18 6.19 -0.19
RC203 A'B!' €3 4246.25 A'B' Y 4.424.82 A'BIC? 4361.26 4417.32 2.71 -1.44
RC204 Al4B? 4195.32 Al4B? 4.410.37 A4 B? 4379. 14 4 456.69 4.38 -0.71

5.90 S 12.62 3.27 0.22

Cap 1.98 -0.06

10 1 10
Intel Xeon 2. 6GHz Intel Core i7 —6500U 2.5GHz Intel Core i5 —10210U 1. 60GHz
5.45 179. 68 6.97
: ( ) SHEA HEA 10 THEA — HEA 10
5 000 (min) . SPAC BAC 1 10 800 s TBAC BAC
(min) . SHN SAINS - ALNS 10 TANS  ALNS 10 50

(min) . Gapyy = (Sp™ - SIEY) /SIEY % 100% Gapp, = (SHYS - SPACY /SPAC % 100% .

(:\

=2
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BAC ( branch-and-check) Fachini Armenta— 3
no ' HFVRPTW
2 ALNS 25.39% 3.54%.
HFVRPTW
ALNS BAC 94.73%
HEA Gap 2%. 1.16%
ALNS HEA fi~ /o
- fir A
RC201 o, .
4.2 RSPSP ;
Solomon VRPTW
RSPSP . .
+ ( C101) . 4
+ ( C201)
+ ( R101) + . C101
( R201) + 2 219.22
( RC101) + 146. 93 ( 1.5 h).
( RC201) . EC-ALNS RSPSP 71 40 min)
3290.93
Pa-
3 . reto .
25 4.1 1.5 h Pareto
EC-ALNS S, <150 h /i
10 i
3
Table 3 Comparison of three types of precooling service modes
&
p L [a [ e [ e (o e o
C101 2219.22 71.00 2 638.64 18.90 151.81 113.82 2 356.59 6.19 71.00 0.00
C201 2 109.69 84.54 2535.24 20.17 149. 46 76.79 2172.72 2.99 90.43 6.97
R101 2 619.16 77.44 3 041.95 16. 14 167.38 116. 14 2 744.58 4.79 77.44 0.00
R201 2 325.93 102.31 2 826.82 21.54 174.35 70.41 2 375.97 2.15 102.31 0.00
RC101 | 2 873.83 79.44 3 822.86 33.02 177.51 123.45 2 873.83 0.00 79.44 0.00
RC201 | 2 414.57 104.31 3 442.65 42.58 175.02 67.79 2 538.11 5.12 104.31 0 .00
25.39 94.73 3.54 1.16
AN Fivfs fisf3 Jivfs i Jis
/s Capl™ = (T -1 IXI00% Gapl = (/5 — /) 7 X 100% Gap™ = (£ - 1) /7Y x 100% Gaph = (7 -

I/ < 100% .

o RC201
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Table 4 Scheduling results of the mixed precooling service mode
min f; it min f, f min2
C101 2219.22 146.93 1 3 71.00 3290.93 0 6 6
C201 2 109.69 148.17 1 3 84.54 2 848.00 2 4 5
R101 2 619.16 167.38 2 3 77.44 2 800. 81 0 6 4
R201 2325.93 159.11 1 4 102.31 3296.98 0 6 4
RC101 2 873.83 84.69 1 5 79.44 3397.41 0 6 3
RC201 2414.57 163.23 1 4 104.31 2 745.26 0 6 4
RSPSP
4
4(a) 4(b)
(a) fi (b) f2
4 RSPSP
Fig. 4 Performance of the RSPSP model in different scenarios
RSPSP
Cl101
1 100 kg 6 min.
5 RSPSP
Table 5 Results of the RSPSP model using different precooling rates
min f] min f,

1 2074.79 1 2 6.00 0 5

2 2 237.76 1 2 6.00 0 5

3 2227.64 1 3 23.63 0 5

4 2 286.75 0 5 40.63 0 6

S 2219.22 1 3 71.00 0 6

6 2335.71 2 3 71.00 1 5

7 2530.84 3 3 96.77 1 5

8 2579.83 4 2 126.52 1 5

9 2 546.79 4 2 151.81 2 4

10 2 548. 14 4 2 153. 68 2 4
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VI
4.3
22
® 4.1
6 RSPSP s
Fig. 5 Results of vehicle routing and scheduling
2 091.81
30. 15( 0.3 h).
1 h
2 249.55
RSPSP
179. 36( 108 min)
HFVRPTW
6 RSPSP .
. ‘ Epsilon —
Table 6 Results of the RSPSP model in the case study
( EC — ALNS) Box splitting
. Pareto
min f; 2 091.81 2 724.04 _— ALNS
min f, 30.15 179.36 e
min f, (/5 <100) 2 249.55 — —
+
RSPSP . 5
1 “ 7 “ ” EB/OL . 2024. ht-
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Abstract: This study focuses on the resource scheduling problem of the precooling service platform aiming to
provide technical methods for the post-harvest precooling issue of smallholders in China. Considering the time
sensitivity of precooling demands and the cost-effectiveness of service operations and incorporating both fixed
precooling and mobile precooling resources this problem is formulated as a multi-depot vehicle routing prob—
lem with heterogeneous service efficiencies and time windows. A mixed-integer linear programming multi-ob—
jective optimization model is formulated to minimize the scheduling cost of precooling services while also reduc—
ing precooling delay times. Furthermore considering the heterogeneity of precooling resources an EC-ALNS
multi-ebjective optimization algorithm based on an enhanced Box splitting method and an adaptive large
neighborhood search algorithm is developed to efficiently obtain an approximately accurate Pareto frontier for
this problem. The effectiveness and advantages of the EC-ALNS are verified through comparisons with the
CPLEX solver and two classical algorithms. Finally a case study is conducted to validate the robustness of our
model and management implications are derived through numerical experiments and parameter sensitivity a—
nalysis under various order scenarios.

Key words: platform operation optimization; social service platform; precooling resource scheduling; multi—

objective optimization algorithm



