基于内容过滤和协同过滤是两大最为经典的推荐算法,但基于内容过滤存在新用户问题,没有考虑用户兴趣变化对推荐质量的影响,协同过滤则面临严峻的数据稀疏性和冷启动的挑战.针对这些,提出混合推荐算法: 基于非线性逐步遗忘函数建立用户兴趣模型,预测用户未评价商品评分;引入“领域最近邻”处理方法查找目标用户的最近邻,预测未评价商品评分,以此为基础做出推荐.实验结果表明,本文方法能有效提高推荐质量.
朱国玮,周 利.基于遗忘函数和领域最近邻的混合推荐研究[J].管理科学学报,2012,15(5):55~64