基于 GLM 的贝叶斯变量与模型选择
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Bayesian variable and model selection based on generalized linear models
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对非正态响应的部分因子试验,当筛选试验所涉及的因子数目较大时,提出了基于广义线性模型( generalized linear models,GLM) 的贝叶斯变量与模型选择方法.首先,针对模型参数的不确定性,选择了经验贝叶斯先验.其次,在广义线性模型的线性预测器中对每个变量设置了二元变量指示器,并建立起变量指示器与模型指示器之间的转换关系.然后,利用变量指示器与模型指示器的后验概率来识别显著性因子与选择最佳模型.最后,以实际的工业案例说明此方法能够有效地识别非正态响应部分因子试验的显著性因子.

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

汪建均,马义中.基于 GLM 的贝叶斯变量与模型选择[J].管理科学学报,2012,15(8):24~33

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2013-05-20
  • 出版日期:
您是第位访问者
管理科学学报 ® 2024 版权所有
通讯地址:天津市南开区卫津路92号天津大学第25教学楼A座908室 邮编:300072
联系电话/传真:022-27403197 电子信箱:jmsc@tju.edu.cn