银行信用组合违约风险的度量和计算对银行监管有着重要的意义.使蒙特卡洛研究信用组合违约概率时,为提高模拟效率,越来越多的学者采用了重要性抽样技术来实现. 它主要通过条件独立性和“均值移动”两个步骤实现. 本文基于前人研究结果的基础之上,提出了一种基于违约相关性矩阵的多因子变方差的重要性抽样算法. 该算法通过主成分分析选择违约结构中的占优成分并扩大其方差来实现. 数值算例证明了该方法在信用组合遭遇极值事件时,能够提高模拟效率及计算精度,具有一定的计算优势.
龚 朴,邓 洋,胡祖辉.银行信用组合风险多成分重要性抽样算法研究[J].管理科学学报,2012,15(11):3~10