基于违约区分程度最大权重的信用评级模型
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

F830.56; O221.2

基金项目:

国家自然科学基金重点项目(71731003;71431002);?爱德力智能科技(夏门)有限公司智能风险管控模型与算法项目(2019-01);


Credit rating model based on weight of greatest default distinction degree
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    信用评级方程是信用评级模型的核心,权重是影响信用评级方程评价准确度的重要因素,合理的权重对于信用评级至关重要.通过以违约与非违约客户信用得分单位离散度的平均距离最大为目标函数,构建非线性规划模型的思路,反推各指标的最优权重组合.通过PR曲线方法对信用评级模型的合理性进行检验,并对1 231个小企业贷款进行了信用评级.通过构建信用评级方程S=S(W)的权重向量W与违约与否的两类客户平均信用得分的距离D之间的函数关系,以违约与否的两类客户平均信用得分距离D最大为目标建立非线性规划,反推一组最优权重W.保证了信用评级方程的评级结果,能够最大限度地区分违约与非违约客户.改变了现有研究的权重向量与整体违约鉴别能力无关的弊端.非财务指标相对于财务指标在小企业评级中更重要,权重高达58%,非财务指标中"城市居民人均可支配收入"指标的权重最大,为14.7%.通过PR曲线方法验证了其合理性.研究表明,"基于违约状态区分程度最大权重的小企业信用评级模型",对客户违约与否的区分精度,优于现有研究的同类经典模型.

    Abstract:

    Credit scoring model is the core of credit rating model,and the weight is the key factor which influences the accuracy of credit scoring. A rational weight vector is of crucial importance to credit rating. This paper establishes a nonlinear programming which aims at maximizing a standardized mean difference of the credit scores of two kinds of clients. Then by solving the programming,the optimal weight of credit scoring model is derived. To guarantee the effectiveness,the model is validated by Precision Recall Curve. Next,altogether 1231 enterprises are rated based on the credit score calculated by our model. The innovations and characters in this paper are: firstly,an objective function is established by constructing the function relationship between the weight vector W and the standardized mean difference D of the two group of clients. Secondly,a nonlinear programming model,which maximizes the above mentioned objective function,is established to find the optimal weight vector W. This method can guarantee that the scores based on the weights have a significant default discrimination power and can distinguish the default to the largest possible extent,thus avoiding the drawbacks of recent researches. Secondly,non-financial indexes,accounting for nearly 58%,are more important than financial indexes on small enterprise credit rating. Among the non-financial indexes,per capital disposable income of urban residents is most important,with a weighting of 14.7%. Thirdly,the credit scoring model is validated by PR curve method. The research result shows that our credit scoring model has a better discrimination power than classic models in existing researches.

    参考文献
    相似文献
    引证文献
引用本文

周 颖.基于违约区分程度最大权重的信用评级模型[J].管理科学学报,2019,22(9):52~66

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-10-25
  • 出版日期:
您是第位访问者
管理科学学报 ® 2024 版权所有
通讯地址:天津市南开区卫津路92号天津大学第25教学楼A座908室 邮编:300072
联系电话/传真:022-27403197 电子信箱:jmsc@tju.edu.cn