诺贝尔经济科学奖与决策理论及其对数据驱动智能决策的研究启示
DOI:
作者:
作者单位:

1.四川大学商学院;2.西南财经大学工商管理学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Nobel Memorial Prize in Economic Sciences & Decision Theory and Its Research Implications to Data-Driven Intelligent Decision-Making
Author:
Affiliation:

1.University of Sichuan;2.Southwestern University of Finance and Ecnomics

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    决策理论是诺贝尔经济科学奖辈出的一个研究领域,人工智能与数据科学对决策的影响与日俱增,决策研究正面临新的挑战和契机。现有人工智能或数据驱动的决策研究范式往往从全局视角讨论范式的转换和新的研究契机及重大研究问题,提出了很多真知灼见。但是,缺乏从人工智能、数据科学与决策理论交叉的视角,对决策理论研究领域进行反思和展望。为此,笔者聚焦决策理论研究领域,首先介绍诺贝尔经济科学奖获得者在决策理论领域的重要贡献,以此为中心梳理和归纳出主要的决策理论(效用理论、社会选择理论、行为决策理论)及发展脉络。在此基础上,从“效用学习”、“偏好演化”和“智能决策可解释性”的视角,探讨在人工智能与数据的驱动下,决策理论中存在的研究契机和重要问题及研究范式转型,以期为推进新技术情景下的决策理论研究提供有益思考。

    Abstract:

    Decision theory is the underlying theory of economics and management to study the judgments and behaviors of human decision-making, and some researchers have won the Nobel Memorial Prize in economic sciences for their outstanding contributions in the field of decision theory. Currently, with the increasing influence of artificial intelligence and data science on decision-making, the theoretical and applied research of decision theory is facing new challenges and opportunities. In this paper, we analyze the contributions of the Nobel Laureates in Economic Sciences in decision theory, and show their main research topics focused on utility theory, social choice theory and behavioral decision theory. Motivated by these classical theories, we focus on the transformation of research paradigms in the specific area of decision theory from the perspective of the intersection among artificial intelligence, data science and classical decision theory; and develop the data-driven intelligent decision-making research paradigm from the perspectives of “utility learning”, “preference evolution” and “intelligent decision interpretability”. We highlight its differences with the classical decision theory research paradigm. Moreover, we discuss the applications of the data-driven intelligent decision-making in economics and management.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-29
  • 最后修改日期:2024-02-04
  • 录用日期:2024-05-05
  • 在线发布日期:
  • 出版日期:
您是第位访问者
管理科学学报 ® 2025 版权所有
通讯地址:天津市南开区卫津路92号天津大学第25教学楼A座908室 邮编:300072
联系电话/传真:022-27403197 电子信箱:jmsc@tju.edu.cn