连续波动的累积变化是否触发随机跳跃?来自国际股票市场的证据
DOI:
作者:
作者单位:

1.深圳大学经济学院;2.深圳大学

作者简介:

通讯作者:

中图分类号:

F830

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Do the cumulative changes of volatility trigger jumps? Evidence from international equity markets
Author:
Affiliation:

College of Economics, Shenzhen University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    股票市场存在跳跃自激发现象和波动率集聚特征已经成为共识,但市场内部随机跳跃和连续波动间是否会相互转化、波动累积是否触发随机跳跃等问题尚存争议。为此,本文将连续波动的累积变化视作价格的“量变”,间断跳跃视作“质变”,采用动态跳扩散双因子交叉回馈模型,借助条件特征函数,引入广义矩估计与粒子滤波方法(GMM-PF),针对具有代表性的国际股票市场进行实证研究,并捕捉和量化两者之间的动态关系。研究显示,随机跳跃和连续波动呈现协同演化、交互传导的现象,一方面随机跳跃将改变下一期的波动率,另一方面量变引起质变,波动率累积也会提高未来的跳跃达到率。同时,与极大似然估计(MLE)、序贯贝叶斯学习方法(SBL)相比,本文提出的GMM-PF方法可实现估计精度与估计效率的联合最优。研究还发现,跳扩散之间传导机制在不同市场中存在较大差异,针对各个市场的量化结果来看,量变引起质变的程度普遍大于质变引起量变。相比境外发达市场,大多数新兴市场对跳跃风险的消化、转移和分散能力相对较弱,其跳跃集聚和持续性处于较高水平。由此可见,监管当局和投资者有必要对跳跃演变规律给予足够重视。

    Abstract:

    The existence of jump exciting and volatility clustering in the stock market has become a common sense. However, whether there is mutual influence between random jumps and continuous volatility within a market is still a matter of debate, that is, there is no clear evidence showing that whether the changes of volatility may trigger random jumps. Motivated by this, in this paper, we regard the cumulative change of continuous volatility as the “quantitative change" of prices, the intermittent jumps as the "qualitative change”, and apply the two-factor cross feedback dynamic model of jump self-exciting and volatility clustering on international equity market indexes to capture the effects between them. Combined with the conditional characteristic function of the Lévy process, taking advantage of Generalized method of moments and Particle Filtering approaches (GMM-PF), and using international stock returns, we are able to capture and quantify the interactive transmission routes and degree of jump and diffusion. Research shows that there are co-evolution and cross-feedback effects between random jumps and continuous volatility, which means that jumps will lead to changes in the continuous volatility of the next period, the accumulation of volatility will also increase the jump arrival rate in the future as well, that is, the quantitative change of volatility causes the qualitative change of the jump. Besides, compared with Maximum Likelihood Estimation (MLE) and Sequential Bayesian Learning method (SBL), the combination of PF and GMM approaches that we develop is much more efficient, faster with high precision. Moreover, we also find that the transmission mechanism between jump and diffusion is quite different in different markets, that is, compared with developed markets overseas, most emerging markets are relatively weak in digesting, transferring and diversifying jump risk, thus making the persistence of jump components always remain at a high level. Regulatory authorities and investors need to pay more attention to it.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-07
  • 最后修改日期:2022-06-12
  • 录用日期:2022-06-23
  • 在线发布日期:
  • 出版日期:
您是第位访问者
管理科学学报 ® 2025 版权所有
通讯地址:天津市南开区卫津路92号天津大学第25教学楼A座908室 邮编:300072
联系电话/传真:022-27403197 电子信箱:jmsc@tju.edu.cn