考虑无人机站的车辆路径规划问题
DOI:
作者:
作者单位:

天津大学

作者简介:

通讯作者:

中图分类号:

C931

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Vehicle Routing Problem with Drone Stations
Author:
Affiliation:

Tianjin University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来,无人机调度受到了学者们的日益关注. 本文提出了考虑无人机站的车辆路径规划问题,以总成本最低为目标函数,考虑了包裹的最晚送达时间、无人机的数量限制和最长可持续飞行时间等约束条件. 针对该问题,本文首先构建了一类基于弧的原问题模型. 随后,使用 Dantzig-Wolfe 分解,将原问题模型分解为基于路径的限制主问题模型和卡车子问题模型以及无人机子问题模型,并设计了分支定价算法进行求解,以获得全局最优解. 大量的数值实验结果表明:分支定价算法在求解时间和求解质量上均优于主流商业求解器. 此外,本文发现卡车的行驶成本在总成本中占据较高比例. 同时,相对于无人机的数量和无人机与卡车的速度比而言,无人机可访问的顾客的比例对总成本有显著影响. 因此,扩大无人机的适用范围,可以有效地降低总成本.

    Abstract:

    In recent years, drone scheduling has received increasing attention from researchers. In this study, a vehicle routing problem with drone stations is proposed, and an arc-based optimization model is developed with an objective of minimizing the total cost, in which various constraints such as the latest arrival time of packages, the limited number of drones and the maximum flying duration of drones are considered. By using the Dantzig-Wolfe decomposition, the arc-based model is decomposed into the path-based main problem model, the truck sub-problem model, and the drone sub-problem model. A branch and price algorithm is designed to solve the problem and to obtain the global optimal solution. Extensive numerical experimental results show that our proposed branch and price algorithm outperforms the mainstream commercial solver in terms of solution time and solution quality. In addition, the truck travel cost accounts for a high proportion of the total cost. Moreover, compared with the number of drones and the speed ratio of drones to trucks, the proportion of customers accessible by drones has a more significant impact on the total cost. Therefore, expanding the applicability of drones can effectively reduce the total cost.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-26
  • 最后修改日期:2023-02-15
  • 录用日期:2023-07-10
  • 在线发布日期:
  • 出版日期:
您是第位访问者
管理科学学报 ® 2024 版权所有
通讯地址:天津市南开区卫津路92号天津大学第25教学楼A座908室 邮编:300072
联系电话/传真:022-27403197 电子信箱:jmsc@tju.edu.cn