大样本中识别标杆:社会网络数据包络分析
DOI:
作者:
作者单位:

1.中南大学商学院;2.福州大学经济与管理学院

作者简介:

通讯作者:

中图分类号:

C934

基金项目:

国家自然科学基金面上项目(72171238,71871223)。


Identify benchmarks from large-scale sample: A social network DEA
Author:
Affiliation:

1.Business School, Central South University;2.中南大学;3.School of Economics and Management, Fuzhou University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为传播积极的意识形态、体现良好的社会风气,各行各业推出一些行业模范人物(即标杆)的评选活动,如“最美医生”、“最美教师”等。这些模范人物(即标杆)往往是大量候选人中的少数,然而传统方法难以对大样本中数以万计的候选人进行绩效评价,且尚未考虑候选人之间的学习关系和具体优势,较难实现大样本中标杆的识别。为减少标杆识别的工作量,本文结合数据包络分析(data envelopment analysis, DEA)和社会网络分析(social network analysis, SNA),提出一种社会网络数据包络分析方法,用于从大样本中识别标杆。首先通过DEA方法构建一个两两评价过程,以探索每个决策单元(decision making unit, DMU)相对于另一个DMU的效率状态,得到一个能反映任意两个DMU之间参考关系的两两评价矩阵。接着,基于该矩阵建立社会网络,并结合社会网络分析中的入度中心性指标来识别大样本中的标杆DMU。然后,根据DEA模型中权重的含义,分析标杆DMU的具体优势。最后,利用春雨医生平台上55个科室中10418名医生的在线诊断数据进行实验,对本文提出的社会网络数据包络分析方法进行验证。

    Abstract:

    To spread positive ideology and reflect a good social atmosphere, all walks of life launch some benchmark selection activities, such as “the most beautiful doctor”, “the most beautiful teacher” and so on. These role models (or benchmarks) tend to be a minority among numerous candidates. However, traditional methods are difficult to evaluate the performance of tens of thousands of candidates in a large sample, and the learning relationship and specific advantages between candidates are not considered in these methods. Thus, it is difficult to realize benchmark identification by traditional methods. To reduce the workload of benchmark identification, this study proposes a social network data envelopment analysis method for identifying benchmarks from a large-scale sample, by combining the data envelopment analysis (DEA) and social network analysis (SNA). First, a pairwise evaluation process is constructed through the DEA method to explore the efficiency state of each decision making unit (DMU) relative to another DMU, and a pairwise evaluation matrix that can reflect the reference relationship between any two DMUs is obtained. Then, a social network is built based on this matrix, and role-model DMUs in a large sample are identified by comparing the in-degree centrality values of all DMUs. Next, analyze the specific advantages of the benchmarks selected according to the meaning of weight in DEA model. Finally, an experiment is carried out on the online diagnosis data of 10,418 doctors in 55 departments on the Chunyu doctor platform to verify the social network data envelopment analysis method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-20
  • 最后修改日期:2024-06-06
  • 录用日期:2024-08-17
  • 在线发布日期:
  • 出版日期:
您是第位访问者
管理科学学报 ® 2025 版权所有
通讯地址:天津市南开区卫津路92号天津大学第25教学楼A座908室 邮编:300072
联系电话/传真:022-27403197 电子信箱:jmsc@tju.edu.cn