基于随机森林算法的员工离职倾向的预测和干预效果—基于OW公司的研究
DOI:
作者:
作者单位:

1.万物云空间科技服务股份有限公司;2.北京大学光华管理学院;3.香港大学经济及工商管理学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Predicting and Intervention Effect of Random Forest on Employee Turnover Intention—Based on OW Company
Author:
Affiliation:

1.Onewo Space-Tech Service Co., Ltd;2.Guanghua School of Management, Peking University;3.HKU Business School

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在当前就业形势严峻的背景下,不少企业仍面临着员工高离职率的问题。如何提早发现具有离职倾向的员工,了解其诱因,提前实施干预或表达关怀,是企业降低员工离职率的重要措施。已有研究虽然探讨了离职倾向员工的表现及其诱因,但没有得出具有预测能力的定量结论。鉴于此,本研究基于随机森林算法,在企业实地场景中,全面考察员工离职倾向的影响因素,帮助企业提高预测员工离职倾向的能力。首先,通过特征工程筛选出重要性较高的特征变量用于机器学习分析;其次,通过随机森林算法得出离职因素的重要性排序,提出预测模型;同时,在企业开展准实验对预测模型进行检验;最后,通过在企业中的应用进一步验证所提预测模型的有效性。此外,本研究还检验了离职特征与离职倾向的相关关系,并发现这些关系与以往研究结论较为吻合。本研究不仅基于随机森林算法全面地研究影响员工离职倾向的因素,也为企业预先干预、关怀从而降低员工的离职率提供了有益的借鉴。

    Abstract:

    Under the current difficult employment situation, many companies are still facing the question of employees’ turnover. Finding employees’ turnover intention, understanding the underlying causes, and implementing preemptive interventions are pivotal strategies to mitigate such intentions. Although prior studies have delved into the factors precipitating turnover intentions, their findings lack robust predictive power. This study aims to scrutinize the determinants of employee turnover intention, thereby enhancing corporate capability to anticipate and address this issue within the organizational contexts. This study, first, identifies imperative predictive variables through feature engineering and employs machine learning algorithms. Second, it leverages the random forest algorithm to ascertain the hierarchy of turnover determinants and develop a forecasting model. Meanwhile, a quasi-experimental approach is utilized to validate the predictive model in a corporate setting. Finally, applying the predictive model to test the validity again in the whole company. Moreover, this research tests the correlation between turnover features and turnover intention, and finds these relationships are consistent with previous research. This research not only comprehensively explores the influence factors of employees’ turnover intention by using machine learning, but also provides useful advice for companies to reduce employees' turnover by intervening and expressing concern in advance.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-25
  • 最后修改日期:2024-06-10
  • 录用日期:2024-07-16
  • 在线发布日期:
  • 出版日期:
您是第位访问者
管理科学学报 ® 2025 版权所有
通讯地址:天津市南开区卫津路92号天津大学第25教学楼A座908室 邮编:300072
联系电话/传真:022-27403197 电子信箱:jmsc@tju.edu.cn