自动化码头AGV无死锁在线路径规划算法
DOI:
作者:
作者单位:

西北工业大学管理学院

作者简介:

通讯作者:

中图分类号:

U279.2

基金项目:

国家自然科学基金青年项目(72101203,71871183);陕西省重点研发计划资助项目(2022KW-02)


Deadlock-free Online Vehicle Routing Algorithm for Automated Guided Vehicles in Container Terminals
Author:
Affiliation:

Northwestern Polytechnical University School of Management

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着无人运输从单车智能化向网联集群智能化的快速发展,在封闭与半封闭式工作场景中运营大规模无人车队将面临诸如道路拥堵、车辆冲突甚至死锁等挑战. 本文针对自动化码头AGV无死锁在线路径规划问题,提出了一种两阶段在线算法,将路径规划问题拆解为线路规划与轨迹规划两个紧密关联的子问题. 在第一阶段,考虑运输网络中的动态负载以及潜在的冲突影响,提出了改进A*算法用于规划车辆从起点至终点的最优线路,以平衡网络负载,降低道路拥堵及死锁风险;在第二阶段,提出了动态集群划分算法与无死锁轨迹规划算法,基于车辆实时状态将车辆动态地划分为多个相互独立的集群,并在集群内规划车辆预留路径从而确保车辆的无冲突无死锁通行. 仿真实验结果表明,与静态集中式路径规划算法相比,所提出的两阶段在线算法在小规模算例下能够提升约20%的运营效率,减少近80%的运算时间,并实现了在大型网络中实时规划100到500辆车无死锁的行驶路径. 本研究对无人网联车辆在复杂工业场景中的应用具有重要的现实意义.

    Abstract:

    Unmanned heavy transport vehicles have been widely adopted in various industry scenarios, prompting a shift from individual to fleet intelligence. However, managing a large fleet of unmanned vehicles presents significant challenges, including road congestion, vehicle conflicts, and deadlock situations. This study introduces a novel two-stage online algorithm to address these issues, specifically focusing on automated guided vehicles in container terminals. The algorithm redefines the traditional static vehicle routing problem into two manageable sub-problems. In the initial stage, an improved A* algorithm is designed to identify the most efficient route for each vehicle. This improvement not only aims at optimizing traffic flow but also takes into account the dynamic nature of network workload and the likelihood of conflicts between vehicles. The subsequent stage introduces a dynamic vehicle grouping algorithm followed by a deadlock-free path planning algorithm. These algorithms are crucial for categorizing vehicles into clusters and streamlining the vehicles' movement within their respective clusters. The simulation demonstrates that the new algorithm surpasses traditional static vehicle routing methods by 20% in terms of efficiency and achieves an 80% reduction in computation time. Remarkably, it supports the real-time operation of 100 to 500 vehicles without any incidents of deadlock. The implications of these findings are significant, offering valuable insights for the future implementation of large-scale unmanned vehicle systems in complex industrial environments.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-05
  • 最后修改日期:2024-02-08
  • 录用日期:2024-05-05
  • 在线发布日期:
  • 出版日期:
您是第位访问者
管理科学学报 ® 2025 版权所有
通讯地址:天津市南开区卫津路92号天津大学第25教学楼A座908室 邮编:300072
联系电话/传真:022-27403197 电子信箱:jmsc@tju.edu.cn