大数据环境下传统的决策范式正转变为基于数据的决策范式,本文以O2O即时服务这种新型商业模式为情景,研究大数据驱动的新决策范式下的O2O即时物流调度模型.本文跨域融合物流部门、其他运营部门以及外部环境信息构成全景式数据,同时放宽传统决策范式的经典假设,实现从无差异化配送时间到个性化配送时间的转变,以及需求服从先验分布到考虑未来需求时空属性的转变.本文融合机器学习和运筹优化方法,实现新决策范式下的O2O即时物流调度模型.在预测层面,构建个性化众包配送时间预测模型和基于订单集时空相似性的需求场景预测算法;在决策层面,同时考虑个性化预测模型的点估计及其不确定性,并考虑未来订单集的时空分布,构建考虑预测不确定性的调度模型,同时设计同步预测和决策算法求解.本文与中国主流的O2O商超平台合作,通过基于真实数据的模拟仿真,验证了新决策范式下的O2O即时物流调度模型的可行性和有效性.相较于传统的决策范式,本文提出的模型能实现更精准的供需匹配,降低延误订单数、平均配送时间和配送成本.
代宏砚,陶家威,姜海,周伟华.大数据驱动的决策范式转变——以个性化O2O即时物流调度为例[J].管理科学学报,2023,(5):53~69