基于离散数据流分割算法的预测方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Forecasting method based on segmentation algorithm of discrete data stream
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    离散数据流具有不确定性高、演变趋势多变以及多极值性等特征.针对这些特征带来的预测难以兼顾准确性和实时性的问题,提出了基于离散数据流分割算法的预测方法.该方法融合了短期趋势提取与分割点在线自适应检测:预测前基于非参数回归短期预测模型和改进的趋势提取算法获取短期(预测日)趋势,提前挖掘、分析预测日的短期趋势规律,以用于在线预测;预测时主要针对在线的数据流,基于假设检验自适应地检测分割点,以解决分割点难以确定的问题,并基于短期趋势修正分割点处的预测模型,减少了预测模型对缓冲数据的依赖.数值实验结果验证了本研究所提预测方法的有效性和可行性.

    Abstract:

    Discrete data stream has the characteristics of high uncertainty, changeable evolution trend and multiextremum,which makes it difficult to achieve accurate and realtime forecasting.Therefore, a new forecasting method based on the online segmentation algorithm of discrete data stream is proposed.The proposed method combines the shortterm trend extraction and online adaptive detection of segmentation points.Before forecasting, the shortterm trend is obtained based on the nonparametric regression model and the improved trend extraction algorithm, then the shortterm trend of the forecasted day is mined and analyzed for later online forecasting.In the online forecasting stage, the adaptive detection of segmentation points based on hypothesis testing is applied to the online data stream, which can solve the problem of determining segmentation points.The forecasting model at the segmentation point is then modified based on the shortterm trends, which reduces the dependence of the forecasting model on the buffered data.Finally, numerical results illustrate the validity and feasibility of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

孙丽君,李方方,胡祥培.基于离散数据流分割算法的预测方法[J].管理科学学报,2024,(9):48~61

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-11-11
  • 出版日期:
您是第位访问者
管理科学学报 ® 2024 版权所有
通讯地址:天津市南开区卫津路92号天津大学第25教学楼A座908室 邮编:300072
联系电话/传真:022-27403197 电子信箱:jmsc@tju.edu.cn