基于主动学习多输出高斯过程模型的可靠性稳健设计优化
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Reliability-based robust design optimization via an active learning multi-output Gaussian process model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对多响应的质量改进问题,本文在多输出高斯过程建模框架下,提出了一种基于主动学习的多响应可靠性稳健设计优化(reliability-based robust design optimization, RBRDO)方法.首先,开发基于改进D-optimal设计的主动学习响应曲面建模方法,以提升试验设计点的利用效率;其次,构造考虑响应相关性的协方差结构,推导多输出高斯过程预测偏导数的表达式,并结合一次二阶矩理论构建风险成本函数;然后,基于多输出高斯过程模型构建多元质量损失函数,进而建立参数优化模型;最后,利用遗传算法获得Pareto解集,并采用最短距离法确定最优解.案例分析结果表明,所提方法有效刻画了响应间的相关性,提升了响应曲面模型和导数预测模型的预测精度,获得了兼顾稳健性和可靠性的最优输入参数设置.

    Abstract:

    For multi-response quality improvement, this paper proposes a multi-response reliability-based robust design optimization (RBRDO) within an active learning multi-output Gaussian process (MGP) modeling framework. First, an active learning response surface modeling approach based on an improved D-optimal design is developed to enhance the utilization of experimental design points. Second, a covariance structure that captures correlations is specified to build the MGP, the expressions of its predictive partial derivatives are derived, and a risk cost function is formulated based on first-order second-moment theory. Then, a multivariate quality loss function is defined from the MGP outputs, upon which a parameter optimization model is established. Finally, a genetic algorithm is used to obtain the Pareto solution set, and the shortest distance method is applied to determine the optimal solution. Simulation results indicate that the proposed method effectively characterizes correlations among responses, improves the predictive accuracy of both the response surface and derivative prediction models, 〖JP3〗and yields optimal input parameter settings that balance robustness and reliability.

    参考文献
    相似文献
    引证文献
引用本文

冯泽彪,汪建均,马妍.基于主动学习多输出高斯过程模型的可靠性稳健设计优化[J].管理科学学报,2025,(12):88~107

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2026-01-28
  • 出版日期:
您是第位访问者
管理科学学报 ® 2026 版权所有
通讯地址:天津市南开区卫津路92号天津大学第25教学楼A座908室 邮编:300072
联系电话/传真:022-27403197 电子信箱:jmsc@tju.edu.cn