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TR FET g ) 2 i i R Y T AR AR B 1

SEUOLKE M Bl B A RIR S 8 1 TR A G A b
RBD $645 , 3545 1 2% JEANHA & Ve n] SE PR i i
T Du BT o O A S S 1 3 ]
PEIIHT T G T B RABUE XS FOSM J5 5 1Y
BRI B, Yadav 5502 8 R fe 5231 5 7T S bk ik
THRL R — 1 4 TR A BT Bl 2k R U RBR-
DO A5 [a] iy U 22 5 i 22 , DL fe/ M 5T 45
RIFR T LR, Shin Al Lee ™ M T3 F—
R 4 (first order and second moment, FOSM )
PSR PERE s, T T 38 B e/ it 4 2B A2 1 ]
SEME TR AE. Yang FI Chingm] VA G ES
THRE A g W 28 53 n] 5 v o A O vk, LUER T
FOSM 77 % B9 K5 B Ml 80 %%, Keshtegar FlI
Chakraborty ") $ H — Fh 3 T 4 BR 18 RE AR 1)
FOSM RISEMERLALTT %, S i 1 Se 0t 1) Pl k.
Li U P T — R T BB AUMA ) RBR-
DO J5 i, W] e w20 T B v SE AR | AT 5T e
HRBUE  JE— 52T 1 A A 2. e 86T
FOSM B A9 260 RBRDO J5 3%+, ] i 145
F 1] BE 2K R A5 (most probable point, MPP) Jg& 3¢
SO ROk, e v o i gl TR R 7 FOIRG B AR
3 BRI MPP FIRBOEAR R 28t
SR R R R E

=4 #2 ( Gaussian process, GP ¥ Kriging)
B BLAT TN B2 e A B A D By A, 7R
v T B T A A B Tz R T AR
I, GP IR RT LORS A A0 5 52 A Y AR 2t A
it DG 2%, Ry L 7 TR ASE Y Ay Bl %) o A gk
D7 AR T E A Hyeon #1 Chai " 45 ) —Fp 3
TGP B — B AT SR 7 s, 456 £
WOORBE  H R T GE AR Jr VA AE AT SR MO AL T
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AR R4S T SR T s i
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TESEIE T T St i, #E— LY R T GP
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GP BAYLR R Ay sk s ARIE S filk ke 1 BB TR &

AR AT SR 43 A PR ME A ) AL, i 2 4 4R
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BT RA T, R ST R BCKs 20 SR % A TE 29 R
DLRRAR AR B A2 2 3 I 45 A = R RE R G fE £
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J7 7 B9 I E 82 2 383 1 D-optimal JINAL 3 3
S B A T AN X o 7 AR £ 5
M. Chen S5 JEFE M E Al 11 22 807 22 19 D-opti-
mal(DO) B 774k, AR TE GP ALY T 45 52
DO FETE IR S B i i B b 8 s 5 08 TR L b
AT R TR T DX FIORG B ok S X Al 2 e
o7 TR A 158 22 114 32 2R JEL. (H U, DO B33 Ak
Dy PRV R R ER IR AR XU B R
fd FHASCR AL Ry DI 7 26 S R OR300 3 ol PR M. I 1
IR T ARME GP BIRIF R Y, oA R
Ab 3 Z e 07 ) [ 01 S0 A S B I R 25 1 B
A 19 RBRDO J5 ¥ AR Fe 507 [ fi 14 i S A 5 4 A1
B RURI AR 3K A A AT RE 5 305 A A i Lz
g SR A IR ESTIR 1PN 8- &R E

ASCHUTE GP BRI HESE T | Fi 2% 22 i i
B B2 o) @A RBRDO &A% DL & S50k 1k iy
AP B, S5 22 i i R Y AT SRR BT AL
EP N e = IV EBS EENEZ iy s e
PR R A I /MR B 1S 58 19 D-optimal 5231, DI TF
23 [AIEFEME T B 3 3l 2 > 22 i Y e 07 o
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U, R AR A T 5 2%, Al TR S8,
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Joi R — IR 5, 2% L e A S Y
JRUIRS: 1 A o HS0ORT 22 I JoT i 4 % pRERC, T A N7
RBRDO #8Y. & J5, # £ H s ALk, 3118
Pareto fift 4 | IR FH B Jod 8 10k i WU AR AR M. A SC
JIv e 22 i R ARy 1 SR 1 e ot TSR g
KR, B ARASE AL i s A M. [RI I, Pl 2 3 3
o) R T TR A B R AR ST
I A B FEATR B 5T R S E AR L A
SCITYELRG 25 T A AR DG | BT a4 2R LA KX
Bz AR X A 45 SR B S e, ARAS 1 e R et
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FREe bR T BOR S,

1 iR

1.1 ZAFHETEER
PRAER s GP AR (R m A d 4k

BANX = [x,,...x, 1" % =[x, 2,0,
=1, m. XN E m DN EH Y Ny =
[y sy, 1T AR y S5 R T X, Z 56
£

y(xy) = +r, R (y —pl) (1)
Hohow S B0 oma RN ¥ E;
(cor(xy,x,),... cor(x,,x,))" Hx, FE A A
x ZIAHY 1 x m 7265 R FmHiA x B9 m x
m W 2560 R = o’ K, K gy m x m WP 7 226
51 Jym HETCEN 1R

GP BIBY R P J7 28 5K 22 pRABCHL PR A% RR 4,
AR R KA 75 15 801 (Squared exponential
covariance function) ., 5§ #% (Matérn kernel) .
v- $8HU#% (y-exponential function)
SEHU LT RR B A B A x, Filx, 2Z TR
T3 2 RFR AT LLRIR R

k(x,,x;) = cor(x,,x;)

Ty =

covariance

d
=0 exp (—Z (2, =,4)2 122 )
P

(2)
Forft o Al 1, R RIS, 5B R
PRI ASTER b A7 TR, (K], =
k() - 38 R PR A ABLR B8
TZH, GO R ECh

K] y.X) == 2 mIn(o?) +In(K) +

§@wnwwwMH<x

RIG /MU L(K |y, X) BIVATARAGAR AL R
MBS ARPESEAGTHAE, AT AR B A x, b
) T 7 22

si,=0°(l-ry R r +(1-1"R7'r, )" x

('R (1 =1"R"r,)) (4)
1.2 sHUSHNTEER

FrAfE GP A7 RE A g b Ak B — 4 it o) 107 A
(] O T A0S B A ). (LR | X 22 i H iz
A AT SE PR g T Ak IR A, 1207 1 JC VL 2% 1
HB i 2 T] AR G, Il 1 s, IRLE, B AR
e GP My et £ ma )i RBRDO FL5 | My A 1l i 3 Hok
RUTGTIORG B2 B AN /2, 1 TS B AR i A A v 1 v
. itk AL T MGP 1% RBRDO 7 ¥4 R
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3 - { 0'? 0'1,2} (6)
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O, 0,

(a) bRifE GP HERY

(b) ZHiih GP B
1 4R GP B0 MGP B
Fig. 1 Standard GP model and MGP model

ANEEEA kAR A 2R Y
MGP B8 BUE A i 2 P A3 GP i 72, 1%
EWERN y, RAEER I 2 o) , HIL(H) P
T3 2 W6 i A 2H A 2 18] A R T a0, st (2)
Jr7s. AN, A5 MGP 1 AR ZE B i B Yy, ()
My, (x) (Hrrg,g =1,,n Hg#g )M
[l AR A G P RAME I 2, », 5 x
ATLAAH A S BL 2 A28 (n = 2)
)

Cov(Y(x,),Y(x;)) =

{COV(%(%) 21(%))

cov(y, (1) ,y,(x;) )}
COV(yl (xl> ,yz(xj)>

cov(y,(x;) Jz(’%))
(5)
Hx, =x, Hn =2 0822 x2 5 (2,) Akl

Ho,, = cov(y,,y,) - TEEA n A B9 — i
BT AR A Y, (i = 1,,m) B CFR) B
7 MR

o, 0y, o,
0'2 cee O'
= 1)
2
O-"

It 7E— BT, Y BA mn x ma W5 22
el
> = Cov(¥(x),Y(x,))

Cov(Y(x,),¥(x,)) - 2

(8)
T T xg AR E n A R R X
n xmn P72 56 1
30 = (Cov(Y(x),Y(x)), -,
Cov(¥(x,) . ¥(x,))) 9)
HR A f5c 0 £ 14 JC s FLIW ( BLUP) , 7] 45 5
MGP 5 fry 7 0 v iy
y(x) =g +3,,, 3 (Y-Fp)  (10)
Hovp 2 p 897 L/ — 7€ ( generalized least
squares , GLS) {11
p=(F'3'F)'F'3'Y (11)
Hp F 2 —A> m e 8007 m 55 nox n SRR
Kronecker FL. MGP ) Tl /5 22 4

MSPEL5(x,) 1=3,-%, . () )21, .+
UF" (3,)'FU" (12)
Hpvu=1-3,,.(3)"F.
R TORAIER (10) FI=(12) BA R, 48 SCHE
e X 3 A6 26 P4 (linear model of coregionalization,
LMC) AN WJ 43 FE B3 75 RRESL T M s Oy 22
HFFLURIE X, BIEE R, — D RARIER I p
FIBIT ZEHRE 3 64 n HE g A8 ] DL 6035 n
A7 [R) A < b v A8 (AL TS 22 ) 1Y
it Z W, TR R I + AZ,3 = AAT A
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—ANREPRFERE . ARE Y AT R AT Y n i
AT RIR R

Y =u +AZ (13)
Hbp = (u,, e, " J& MGP BRI {E [ 1
A = (a,,) R DMFIEERE;Z & RA
eI A AN 7 2 B FH B ST AP s B R )
. Z WA e R B =t (2). X (2) £
it GP BIARIRY My 2 R F I K S =
(1,0 o=1, n. MZ(5) WTLIFRRN

Cov(Y(x,),Y(x;)) =Adiag[ K(x, ,x; 1Y),

o K(x, x50 ] A" (14)

ox, = MR(2) Fexp [- Y (w, —x,,) 2 ]
= 1.k, (7)) h 3

Cov(Y(x,),Y(x,)) =3, =AA" (15)
L y, My, ZIEPI52% o, , TTARR A

Tew = Zagag (g,8 =1,,n) (16)
T H Teg = 0'2,0'2 ﬁ?yg B2 Lhin =210
TR, B 225 Y, T AR R R
s, :{ afql + af’z :
a G, | +a, ,a,, a;, +a;,
TR A RREFRE, B 0, = a  JE%
0, (5T a, ) SR B 7 2R 7 2
DIV H8 B0 sR B — 2 A« ], X (2)
A5
K(x,,x;305) = exp[ - (%, - x, )12
= exp[ - [} d;/2] (18)
Hohd, =] v, —x, | AT 2 RS
Cov[ Y(x;),Y(x,)] =

A{K(di’j;ll) 0 }AT (19)
0 K(d, ;")

B (17) A (19) HhAf 5
Cov[ ¥(x,) ,Y(x;)] =
|:a?,lK(di,j §l|> + a?,ZK(di,j ;lz)
al,lK(di,j §l| )az,l +a’l,2K(di,j ;lz)az,z
a;,1K<diJ;li )az,l : a],zK(d;J;lz)az,zJ (20)
a2,]K(diJ;l ) +a2,2K<diJ;l )
= (15) fron A Bl 3, FRE SRR X

a, G, +a ,a,,

}(17)

Wit T A B IE & RE e X M A #54T Cholesky
i, A = LL" . #ifR L XML LA TR
NARSAE, BRI ORGIE R J7 22 9 1 X FR 1E GE F
P, pemia R (5) ~12) PR BT R A
WPk, Svenson HI Santner™ ™ 75 f KRG 5 72
HEINZISR (L),, = 0(i = 1,-,n ), LURIER
FALITER N AR 52 BR A0 BBl AR ek BT DLER
RH
(3, pu] Y)=In 3, [+In | F'3,'F| +

(Y-Fu)" 3, (Y=Fu) (21)

B KA KT B RLSR o £ 2K (21) , AT Al 31 MGP

BT (68 285, HE 1T 0T 3RAS MGP AR Y [ T mp) iz
2, st (10) A= (12) frs.

2 EHFISsHUSMIREEER
T3k

7E RBRDO H1, Wi )37 iy 18 A5 750 A0 o b7 5 %0 {EL
AT BEAEAE R E T B A LA 4 R A HERf LA
AR e, AT 4R AT 8% T 1 MGP
EERT V| B O AT AT R S BA T LT
S o 157 gy T ASE 25 R (LAY TEIORS 2. DO i3
TR TR NN BE 1) e Ok 2 — , Had g
T RAGAT B 4 det(M™M) 1A K 356 438 397 1 52
B HE R MOJEAE m AU RAR R B SRR R
m x k BERVEERE. S 1 R R R M, L2 i
IO G B A5 R, A SCORE w7 A K S B9
DERRA AR ERE . by T3t s ny 2 EUE B
VA WL AR AT AR SCHE R T MGP A5 1 ) 5 bR
B ik s T FI - B AR S, ARk
PESCHR[ 40 ] HR R 4189 DO HEN. X5 T m 4~
VRl R M, AL m AT AR 5. W DO 18T
Wy >y
X, = arg max det(M!,, M, )

m+1

arg max det(M! M, + m(x)m(x)")
= arg max(1 +m (x)" (M, M,) 'm(x)) x
det(M,, M,) (22)
Horpom (x) JEVEAEA x PEREAY & x 1 193 pRER )
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TR FET g ) 2 i i R Y T AR AR B 1

i T det(M, M) HEH m DT RS,
HXET x,,, SR AT LU H AR R g b4
mg. faifb=(22) AT
X, ., = ar%er}zlax(l +m(x)" (M M) "'m(x))
(23)
HTRUE (M, M)~ A, A (23) Hom
ATE I A5
=argxer!rzlax(l +m (x)" (M. M, +pl,) 'm(x))

X

(24)
Forn p S A 1 e 1 AR R Y 5 R LU 3L p, S
55 i AR R AT 2% o SEA m UL
HIFEAR T 22 s Z L.
JLE DO ik REARTE MGP A7 () TS
(B HHT G BT 1 o R AEAE BT 25 [ (30 S il
BL DI, DT T 6 352 M 24 i 137 g TR 69 900045 2
IE BT ZZAE R BRI AR SCR R
A B /N S 4 B 70 101 W) ( space-filling, SF) 1
X DO Bt i LA, LA T sy 25 1]
T S R AR/ NI B U AT Ry

x = arg max min dist(x,x;) (25)

veRi=1,m
Horr dist(x,x,) BRI R R &, A SCR
FRECHEES || x —x, ||, . K D-optimal #E Nl KAk
e/ INEE B U 2 MR 2 A5 8T AR 1 T DU

x,, =arg max[q, min |x -x, | +
i=1,-,m

m+1

(1 +m(x)" (M, M,) 'm(x))]
(26)
Hr o, Flo, BAE A LEE o, =a, =0.5. K
TR AR, 2 (26 ) HR IS HE U R AT
R( e

xe

x ., = arg max[&min,il lx—x, || 2
) US i=1,-,m i

g?“ +m<xﬂ<wﬁﬂaﬂ”nwx>ﬁ

(27)

Hr Uy = ma&(%z | x —x;1|3;U, = max(1 +
x€e i=1 me.”

m" (M°M,)™m) AT LU = R
Pt AR B S R | R,

HiEk1 ET vepEENENFIEE
Algorithm 1 Active learning algorithm based on the MGP model

Input; & K RVFBET RN, s BRESIMBOTEADE N, B
AN RS BRI BET AR B, i = 1,0 s WLINEHE D, =
[X,Y] ;&iddE 2

Output : MGP BEEUFI R EIAE R (i Ky AMGP 157

L. F AR D, #% MGP SR, If-4fE S AMGP B

2. whilem < N do

3. HHE A WL B Dy, A6 3 3 6 1 35 T a5 A 9 356 R

B IR M,

4. F T Y RTISCAE B ILA MGP B 3678 o2 1 s>, 3t

;%;P {E;

5. S MGP I AMGP AR SRR T A Ak A FE R R
m(x),-,m,(x) .

6. IR G ETIRE AR A m

7. fori = 1,---,ndo

8. WAL HHTES § AR AR AR mz;

9. while mz; < B, do

10. forj =1,--- N, do

11. TH U U,

12. TR BT AR A = (27) 5

13. PR BA IR KENE B S Dy IR I

M2

14. K (M, M, ) ERC(M), M)

15. FHF MGP il AMGP 5570 ;

16. end for

17. mz; <—mz; + N,y ;

18. end while

19. end for

20, RAFHEEN Y B, NI
i=1

21 FHfmem+ 2B ;
i=1

22.  end while
23.  return MGP RN dMGP 5%

3 ETEHFIEERBAAEN
R

3.1 RBRDO REHESE

BT F 2= MGP @BIER 1 £ )i RBR-
DO R EER AR , Qi 2 R, PRI IR AT .

BB BT 3 R IR
Fa 32 LR 07 A DG AR 4 MGP AR,

B2 FIHEE 1 Ry s 2] gkt
B A TR R e A R

F]R3I R 2 e B,
BE1 iy MGP BRI S e T AP s A
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B4 MG E R AE, 45 B T
PR M (i 3 XTI A TR g ) 45 2R g o XU, AR

HIRS  FIH] MGP ASHY R i 0 RN 5 22, 45

MRS ) R 20K ST 2T TG R

FE6  45A I ok RS A bR
B, A RBRDO R,

$B7 FHZHEBRAR SRR
1k, 3545 Pareto AL, TTERR G IE &, - F i
PE B VLA L A S .

B2 AXFRAEREE
Fig. 2 Flowchart of the proposed method

3.2 KPR A

FERT SRR R, T AR A TR XS
PR R E ( G(x) = 0) Rl 53 N2 4 X8
(G(x) >0)MEMXIE( G(x) <0)BHNHE
I ABERAS R x = [x,,... ,x,] IRIWIES A
x, ~N(p,, o0,),i =1,....,d. Witds x =
[y e oo xy ] RETRAGAR G(x) = 0 b, HRHE—
KBRS AR D AR R BT AR X b
R R

6T(x) ~c<x>+2 (52) =) @)

e g ok Ka (28 ) 1Y 29 8 A0 AR o 22 73 5]
o (x) Mo (x), B G(x) =0 MAAE x 41
AAEREEAR v (x) IR P(x) AR A

i (ac(x)) (p—x)

Mr(x) ox;
29
v(x) = g-((x) [2 (80()6)) ]1/2 (29)
P(x) = @[ -y(x)] (30)

Hrpu, Mo, 705 5 A x 8938 F bR dE 2,
D[ -] EARMEIEZS BRE CDF 1Y 300 pR %L ; 7T 58 45

By (x) FFfr i AL E x 5 IRE kg 1A%
B AT BB R ALAL (MPP) ZZ 8] (1) JLAA] FE 5. A SR
JH HLRF ( Hasofer-Lind-Rackwitz-Fiessler ) 1% 1t
A TIAE SR AR MPP. HLRF J7 ik B 80k R
1R B T AR AE O A, JUHAE AL PR AR LA FROR
SRRSO SR AT i R AR R, B e A
BPREGE T MPP JF RT3 A R R R 1y
SRR AR E Y. 4556 HLRF Jr ik iy Bk kAR aE
AR, TES 5 SR [47 ).

AR 2R B 26 P (x) #4368 KU A B
B, VI B A ST IO T XU A . Y A
J5 MPP 22 [ TE [ S 5 0 R XU Jli AR 45/ 5 e
2, 1E ) BRI KRS A R, A R
MPP 2 [8] 4 B[] i 85 I, 8 % A R ORAS. | T
AR FZOCTE QAT 7E T HE DCIUN | IRTR 255 5 18
T fRl P T P 5 B A e I s A B TR, A
JEHA SRS MPP Z[H] A TF 1] 5 2 A 0. IXURS: ik
A RN

RC(x) = B(x)P(x) (31)
Hor B(x) S 77 ANl 2 A]EE DRI BR ] 7= A= 1
REBONA; P(x) = @[ - y(x) ] WRBBEHR.
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TR FET g ) 2 i i R Y T AR AR B 1

A (31) AT, R il AU A bR, 75 5
ARAF FRAR S R B0 I 5 8.t T TR S Berh
2 T BT VA 38 5 I A AR B PR O AR SCHE
MGP A5 O HE 2R -5 i 5 B0 2 35 50, L
AR .

BAE x,, R Ax, Bt AT, e =1,...,
d . R FRARZE T RE AT, , AL BCH

Ay, (x,) ay, (xo)] ay(xo)

TR , 0,
Hrpy(x,) N MGP WFUUAE’JIJJ
(10) LA (32) AT 15

ay, (x,) ayp(xo)
) ) axoy,

(32)

ERRRL, KX

9%, ,

_(FB +r(x,) R (y - FB))

8x0’t

- R R G - 1) (33)

Hr or(xy)/0xy, H x,, I FEFHA X ZH Y
W5 22 K ARFEE. x, , 0B I S, 2

] B I 7 22 K R AT R
cor 9% x ]: 7600r[x0,xg] =
’ 9%,

d

T i, €XP (_ 2 (x([; P x )2¢A2/2 )

(-7 (x5, —x;,)) (34)
ﬁ¢blew.yﬁ%§ﬁ%b¢ﬂ%c¢w
o MTVEN N 22 ) 52 SUAH DG . AR 46 2 (34)
T%‘“ ﬁu/\ x,, FI X Z[8] B P J7 26 ¢ & 0 [
ar(x,)/dxy, . SRJG, xy, A0 B O 3 H5F00 0 R KR ]

EV

ay, (x,) 69’1)(3‘70) =800r[x0,X} y
ax(),r .... ’ ax(),r a'%(),z
R (y - FB) (35)

B (35) R A (31), AT 3T MGP A=A XL
Iz J A PR

RC(x,) = RC,(x,) + -+ +RC, (x,)
, zd’ Ay, (x,) (Mx[]_ )
= ZB (x)P| - li ( G(jfco(t )x* ' 12 (36)
h= 1 (Xg
[Z ( o, j o 0‘30]

Ho B, (xo) S5 h A0 A Tt A2 ] & DX ] R ]
JIr 7 HE B AT R B RAR 5y (o) g AR AR AT S X f A
MGP FEABEH A 1L A FROIR 2 bR R
3.3 ZUEERKEH
Jo e 451 2% R RSO T D 125 H B BT 3 A B
AR VR AR b bl iz T i R
JRE G R X 22 i (1 e fi 2 B Ak )
Wang 55 42 11 2 70 i 1K R 8K, DLZR A 5 R
AT E PEXS AL S R B 52, Rkt T
EL(x) = (y(x) -T)'C(y(x) -T) +
trace[ C 2?( )] (37)
Horbr T gm0 B ARME] 5 C SR AR FHLL R
/2R MEJZZIKI%, Z?(,) IE%J/\)J—T"LE/JP X p I TH
ZEWNITZERE N p SRR L A SCLAZ TR R
PR (37) WP TERR , LR S AU iR AR A .
3.4 %Mk RBRDO 1=EY
AR MGP BRI A, g 2% S ey 1 A G
P P i S SO AE A 5 T 2 ASOHRE 48 b A XU il
A BRI, LA e i 1 o S92 P T BOAR . T A S £
B 75 TR R | KU A LR e R O A Y
RBRDO ## 71
RC(x) = RC,(x) +... + RC, (x)
EL(x) = (§(x) -T)'C(y(x) -T) +
trace[ CX;, ., |
s.t. x e ¥
Horbr w Syl AR 5 XK. A MATLAB 4k
TR 2R 2, /Mt (38) , a4k
15— Pareto 7 . A< ORI FH e G 5 9600 A
Pareto fifF4E P B AT e 0. 15 5, A sE 5
5 e/ ME(38) Y PIAS H bk pR AL, 2R 75 1
HARBRAEAE (obji™ obji") . SR )5 , i1 BT Pa-
reto H7H 5 BRAEAR (obji™ ,obji ") Z [ A KK L
AR R I Ve B AR T A D T P B A A

(38)

4 KBS

4.1 HEXRGISH

A1 Bohachevsky I PREL, B EA LT L
Xof 2 1 i 5 5 T B 3. 3 22400 el 3 1
LA 2 AN A PR 2ER, IR R =t
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f, =« +2x5 0. 3cos(3mx, ) 0. 4cos(4mrx, ) +0.7
f, =2 +2x5 —0.3cos(3mx, )0. 4cos(27x, ) +0.3
o =« + 245 —0.3cos(3mx, +4mx,) +0.3
(39)
Hrpy, e [-1,17,i = 1,2 . WIEX39), FH
YIR$0 T )7 3T (sliced Latin hypercube design,
SLHD ) 5 B 3 &2 77 A ) i WA A 1
SRR MGP BB AT i 87~ it Iy
T2 Ay A 7 1 IR AR AR A, I AR iR A I
GRREAS 1O T BB IR O A A Rt A S L 1y
J MR 1R 2Z (root mean square error, RMSE ) Fl 4 X}
SEHJ1R 22 (mean absolute error, MAE ) Sk T K i
FEFRFEAT T . RMSE Al MAE (315K T

_Lit(’,r 1 o, ]
RMSE—iterg( MZ; (v —yi)zj (40)
] num
MAE = Lter;(numﬁ v -7 ) (41)

Forbry, R ECSZ A0 R AR 5y, J2 T 0 AR 5 num
j:l(ﬂl'ﬁt)ﬁ FIASEC, U B R 205 iter S 2 ELIR

(a) WAy,

(b) ] 3 Y2

B, BEE R 50. AR5 LA 90,105 120 VIR AS Sy i)
(R 3= 32 >0 D) Sy A4 1 o7 16 10 A4 387 Y
K6 ), T RMSE {1 MAE fi, LLPEAY BT 42
Dy vk BE. A T AR TR G A SR o A 1, DA
50 Y45 B RMSE 1 MAE {8 R fe 2 % 4
P, AR I 5 SR A . AR SO
T A =R O R I SR ) GP AR T ik
(classical GP method, CM) ™' BT DO fE I %)
MGP %4 77 1% ( D-optimal method, DM ) % JE T
Y553 [a] 3 58 E ) A MGP 2 455 77 925 (uniform
space-filling method , UM) SHOAN R T B A S
PM J735 % DO J7 36 P BGHERCR B 3 hgh i T
DM A1 PM J5 ik AR5 25 5. anidl 3 firzs, DM J7
TR ING 30 R R 2 R T, X
S T e Y R AR TIAS ST PML 7 ¥ e it
TR BT DI BUIRS B A T 02 (Rl
PR RAS T8 A RS . S T2
SR, AR SO T 50 RE & 2 A RMSE B Al
MAE {ii, 0K 4 ~ & 6 if7n. RMSE {8 il MAE
PIE AT LSS R, k1 ~ £ 6 PR,

() WaR; Y3

El3 PMF1DM AERIREER
Fig. 3 Experimental results of PM and DM methods

(a) Wi ¥ (9 MAE {4

(b) IS %Y MAE {85

El4 FAABEITLEE (90 NlZREEAR)

Fig. 4 Comparison of prediction accuracy (90 training points)

2025 4212 H
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() Wi ¥ () RMSE {i (d) S50 RMSE {4

ZE 4

Fig. 4 Continues

(a) WV MAE {8 (b) i FHH MAE {8

() WIS B RMSE {8 (d) fRF%Ay RMSE {4

5 FMFEEXTLLE (105 MIZRERE)

Fig. 5 Comparison of prediction accuracy (105 training points)
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(a) MR P MAE i (b) i 2 MAE {H
() "R FY RMSE i (d) fi % H RMSE fE
El6 FMAEEIILE (120 NMZEER)
Fig. 6 Comparison of prediction accuracy (120 training points)
®1 ATREFFER MAE & (90 MIEREZE)
Table 1 MAE values of different methods (90 training points)
MAE
Method
¥ Y2 Y3 Ay, /9x, Ay, /0x, Ay, / 9x, Ay, / 0%, dy3/ 0, dy3/ 0%,
CM 0.0853 | 0.1836 | 0.1827 | 0.5418 0.888 3 1.441 4 1.567 4 1.375 5 1.618 2
DM 0.0824 | 0.1311 | 0.1869 | 0.6020 0.871 1 1.099 5 1.3720 1.5659 2.124 1
UM 0.0441 | 0.1117 | 0.1707 | 0.3260 0.6329 0.898 2 1.3551 1.288 3 2.041 4
PM 0.0309 | 0.0985 | 0.126 0 | 0.2827 0.469 0 0.783 7 1.277 6 1.180 5 1.503 7
%2 AEHER RMSE & (90 Ml ZkEA)
Table 2 RMSE values of different methods (90 training points)
RMSE
Method

¥ ¥s Y3 dy,/9x, dy,/0x, Ay, / 0, Ay, / 0%, dy3/ 0, Ay3/ 0%,
CM 0.0986 | 0.1818 | 0.249 1 0.59%4 6 1.258 2 1.2100 1.999 1 1.609 4 2.5809
DM 0.0865 | 0.176 7 | 0.2073 | 0.5725 1.0203 1.380 6 1.876 0 1.819 8 2.2619
UM 0.0809 | 0.2079 | 0.2321 0.615 4 1.102 4 1.3617 2.223 8 1.764 2 2.6715
PM 0.0711 | 0.1529 | 0.1798 | 0.4343 1.108 2 1.080 3 1.703 9 1.517 7 2.1153
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£3 FEFEH MAE E (105 MIZHZE)
Table 3 MAE values of different methods (105 training points)

Method

MAE

Y1 Y2 Y3 dy, /0x,

Ay, /9x, Ay, / 9x, Ay, / 0x, dy3/9x, Ay3/ 0%,

CM 0.0564 | 0.0795 | 0.108 8 | 0.4143

0.643 8 0.662 7 0.993 9 0.921 0 1.420 3

DM 0.0349 | 0.1129 | 0.144 8 0.306 4

0.408 6 0.8455 1.147 3 1.0950 1.624 3

UM 0.0298 | 0.0841 | 0.106 6 0.2386

0.466 3 0.703 4 1.016 5 1.006 9 1.3117

PM 0.0291 | 0.0593 | 0.0987 | 0.2250

0.464 8 0.5212 0.790 6 0.849 6 1.3395

%®4 FEFEK RMSE E (105 MIEHAR)
Table 4 RMSE values of different methods (105 training points)

Method

RMSE

Y1 Y2 Y3 dy,/9x,

Ay, /9x, Ay, /dx, Ay, /0%, dy3/0x, Ay3/ 0%,

CM 0.0639 | 0.1422 | 0.167 4 0.467 2

1.1350 1.067 7 1.633 7 1.413 6 1.935 1

DM 0.0414 | 0.1439 | 0.161 2 0.3325

0.616 8 1.189 9 1.530 6 1.4193 1.756 8

UM 0.0341 | 0.1266 | 0.176 1 0.296 1

0.662 7 0.947 8 1.557 3 1.411 0 2.163 3

PM 0.0289 | 0.0984 | 0.1443 | 0.2918

0.625 6 0.8523 1.1937 1.157 8 1.6522

£S5 FETFEMN MAE E (120 MIZHAR)
Table 5 MAE values of different methods (120 training points)

Method

MAE

1 Y2 Y3 ay, /0%

Ay, /9x, Ay, /dx, Ay, /0%, dy3/0x, Ay3/ 0%,

CM 0.0285 | 0.0739 | 0.109 8 0.208 3

0.437 0 0.564 1 0.9393 0.918 0 1.268 2

DM 0.0321 | 0.0802 | 0.108 8 0.261 9

0.404 5 0.622 9 0.864 6 0.907 7 1.202 8

uM 0.0239 | 0.0516 | 0.0737 0.1827

0.383 3 0.434 1 0.706 6 0.726 6 0.9592

pPM 0.0206 | 0.0447 | 0.0669 | 0.176 8

0.369 3 0.356 9 0.610 5 0.708 7 0.876 2

®6 FEFEM RMSE E (120 MIZHAR)
Table 6 RMSE values of different methods (120 training points)

RMSE
Method
N Y2 Y3 ay /0%, 9y, /9%, 9y, /9%, 9y,/ 0%, 9y3/ 0, y3/ 0,
CM 0.089 1 0.1156 | 0.1510 0.664 2 0.870 3 0.947 3 1.112 9 1.284 3 1.432 3
DM 0.042 0 0.1138 | 0.1470 0.340 8 0.503 0 0.8413 1.119 8 1.255 6 1.4657
UM 0.034 1 0.066 4 | 0.090 9 0.274 8 0.668 4 0.621 2 0.9112 0.913 6 1.202 7
PM 0.0313 0.0403 | 0.067 6 0.2459 0.610 7 0.388 4 0.649 1 0.660 8 0.995 4

Wk 4 ~ 156 JoR, B g R A BRI
SE A T 1% ) W D 8 TN G R P A
PR T AR AR T | #4507 1L 4045 1 8eaf
F1% W 17 TS B2, i i S5 50 ) TIEINOHS BE AR X A 2.
3 2 P T i S T A TR 4 By 7 22 pR RO S B
%% , S EOR 1 2R A5 FLTI0I0 (R B Ry IR A, SR 1 ~

ORI H AFFEALCR T, ASCHT g PM 5 L3k
13 T BR ay,/ax, HMHAAE b5 19 Fe /N, IS4
PM J5 1% 4% 9y, /dx, (RMSE {HF1 105 Il ZrkEA
T/ MAE {H) 2K T DM J5ik (H =35 Z [0l 22 55
AEH /N KR TARSONERNA RSN BT CM 5
B ICE 5 A Y e =2 ) A A G S O
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FHRS A AN AR SC )5 36, DM 5 B e iR 6 72 op
FH LR T 5 R EE XA OIS R, UM )5 vk
OGN S T DX Bl S 7 34 A0 1 | B b 3 LA
D7k BT R WS B 22 TAR SO ik AR S PM
TRAN S T ) [0 22 [R] B4) AF P i L e T
95 B PR WO RS T 3 e (R ROIIORG 2. (]
it R T O 5 ) TR 2, AR S %o i 7 ¥
TR BE BB T AR 5 — T, 7E R 1 ~ K 6
HZAR SCOT IR TRONORG B2 B2 T LU ) B K AEH 65. 1%
(120 MNGRFEAT y, 19 RMSE {H) , &7+ Lo 9l B
IMEH 1. 4% (105 DU ZRHEAT ay,/ox, B
RMSE {f). ¢ 1 HASC PM J5 ¥ AHES T CM DM |
UM J7 3 (B0 LB (AN 5 dy,/ax, ) 433k
34.3% 32.8% .16.8% ; 3¢ 2 Fp A N A0 g g L 151
P50 18.5% 15.3% 21.2% ;35 3 AR
B RACE L B35 M50 3 R 23 % 29% (13.3% ; % 4
rHORH I P 2 LG A9 0B 530 27 1% .19, 9%
16.5% ;3% 5 HAH I A9 ek F L A3 32906 R 30. 9% |
34% .10. 3% ; 3= 6 HAH I Y B L ) 38 (R
53.5% 43.4% 24.3%. L, A S5 R 0w W AE
i S B A TUIORG B T B A B .
FEESHRACR B 7 45 T 40738 S8 Rk R
BRI IB AT R] (s) . A 45 R Y 7E 7] —f
PR EE T #E47 (7 XL Intel Core i7 - 13700K,
3.40 GHz; N7 32 GB).

E7 AREFENITERE
Fig. 7 Computational efficiency of different methods
H1F CM J7 32 2R P 2 i o 7 gty T s A2 5 s
SRR LR T U B, FLBRZ f
AEX 7 B ORI # AR T 58 AR = i A 5 1 P B
AT DM UM K PM ¥R BT 82 2]

FERELR Ay v T A 0 o B P 2 AR
BT R P TR AR | 503 = b I T AR A T AR AR
X Z. B 7 v DM UM K PM J5 ¥ Fr i #E Y
e KB [E] B AR 43 5l R 292, 75 s 343. 08 s,
276.76 s, HJEL it KF CM ik, B —J5 i, M4
T AW 827 2 Ik (DM Fl UM) |, A SC PM
TP ARIEFER 2 138 A, BUAR SO it
SRR A 3 B2 2 FE VL LT AL Ak,
TS H0 Al e A A AN T A R R ) 1z T A
R W AT R AE O A A B b T T AR 1) B ) A 22
AR CEHAE T — 547X b ) R A SOk
FEOR T S Z (1T AR (R LB T T g 1o iy v A
TR TR 5, o F £ 6 2000 RBRDO A58 78 $i {1t
TR AL
4.2 IRERGIDH

ZTRRRBIISE T ARG SR b i
LS 56 A mT SRR A BT AR R R S8
FRAELHE 3 AR . 45 U &, (mm/min) il
M ox, (rpm) FIHTBI AU x; (bars). R4 0] 548
/R IES D 5, ~ N, 0, )i =1,2,3  H
B2 MbRUEZ AN S, =+ 0. 1u, Flo, =
8,/3, AIPEAR R N Ok sk 7 Fos. iZad #E Y
3 AR A STy, (N) GBY] y, (pm) F1E
By, (). BN y, FEoR il FLIT REGAHE ), 2R
H etk HAME R & 12. 5. [ BT8R R
v DIINE S TTHBING y, SOTCHE R A 77 R0
BOR. WO TR P R AT SE B Ky, 1Y
A SEIX BN y, e [10,15] . WA y, Fmklisk
ERMASLE R Z B2, S/ N RerE , L H
PREEE N 30. BRI v, 5 FERELLIZ R A
W) 77 A 2R B AN B A 7 i, LT B X ) 15 R
y, € [0,45] MR yy FKonfLAY IR NI B H AR
S/ NME R AR Z [ B 2208, 0B/ Ntk
HARME R BN 20. y, {EBN, 7= 0 0 0] 5 R R B
ey TSR X (|l v, e [0,38] .

*7 THREEERTFKE

Table 7 Levels of controllable variables

2025 4212 H
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TR FET g ) 2 i i R Y T AR AR B 1 — 101 —

2] [ Y5 7E 8 72 X (8] 2Z A 8 7= A o i
I TR, AR IT 0 BB 7 A A R 1 2K
BEOAE BAS. R, AR S50 1) B 1 AR R AR ]
TN T — A e i A S B E, 0] B8 Hu s
/U IRV AR RTS8 2 | AR T 7™ i/ 2o B A £t
PRI T S o 7l oA R S T S R AR (s
THOCA Y LA, L0 AG B2 X 15 e A i A S 8K
B A R 2 2 I, AR R 328242
ARy 1, DASR THASTIR ) TG B2 | 108 T e i 1
L r gt AT S50, 1 5%, LA SLHD Jik
BEIL S AWILA RS AR5 RS 1 pird 3=
Bl 2 J5 43 BB 7 1 0 10 MRS
LN[AG 35 DYNGFEA S IR A Rk 8 T
. R T U SR A9 v A A SO0 i e )5
M), A SO i A —fi DG R IEAT T RUS T, B
Je, MR 8 I I BRI G MGP A8 AR )5,
K HBEALRRE J5 2 2 B 200 4S5 5 FH T iUk
PEAYHT B I, 3134 Sobol 5 %k L i £ UM | 45
RULF9. 9 T, B ASE o, XTIy, Al y,
PRSI RPN SE A TRl LA TN 2
XUy, Fy, BISEMAEEIS , XoF M 7y, ()5 e R %
BN M A S wy X TR N YA R 2 5
i) A& 51775 Sobol $& £ 1Y fie/IMEL A 0. 098 ( fi
ASH oo, XNy, B2 . BRI 5,29 H i
Sobol FEHCHEIREL K, At B/ T4 H A (0. 01
5% 0.05) M1 , 3 W1 22 1) vh 45 i A S 500 i
H ) 17 384 5 R B S RS . 55— T, AN TR ik
JITA5 1) Sobol 48 £ i W A7 AN [R], {H AR X K /)N 5 4%
R SASEA — 3, AT R BH 3% 9 A9 SRR 43 #r 45
FEA R AR, B X% TREZR B, A5 A% R
R REANTT

G, (x) =y, (x) - 10

G (x) =15 -y, (x)

G, (x) =45 - y,(x)

G, (x) =38 —y,(x)

Hrpry, (x) g MGP BERIES p />0 o7 . KA ALy
HACA HLRF 525K A 20 (42) 19 MPP 55024 (-
0.03,-0.05, -0.03),( -0.72, -1, -0.63),
(0.11, -0.18,0.07),( -0.1,0.08,0.09). 4z
2 (36) F4 HE XU B A bR £

(42)

*8 KWt MER

Table 8 Experimental design and results

i A i+ e

A * % x3 71 Y2 Y3

1 -0.56 | 0.06 0.60 9.72 49.24 | 33.02
2 -0.74 | 0.25 0.43 9.46 52.11 | 32.55
3 0.17 -0.40 | 0.18 10.14 | 42.68 | 41.90
4 0.35 0.97 -0.25 | 7.90 52.94 | 38.78
5 0.85 -0.82 | -0.72 | 10.42 | 41.06 | 61.39
6 -0.86 | -0.98 | -0.95 | 15.52 | 46.81 | 49.05
7 -0.98 | 0.81 -0.95 | 9.27 62.25 | 35.12
8 1.00 0.99 0.96 6.68 46.68 | 39.04
9 -0.95 | -0.97 | -0.35 | 14.54 | 44.56 | 44.39
10 0.93 0.98 -0.54 | 7.80 50.83 | 49.15
11 -0.36 | -0.96 | -0.93 | 14.36 | 45.07 | 50.95
12 -0.80 | -0.84 | -0.99 | 15.03 | 47.90 | 48.49
13 -0.84 | -0.90 | -0.47 | 14.32 | 45.19 | 44.87

14 -0.73 | -0.97 | -0.25 | 13.97 | 43.25 | 44.03
15 -0.50 | -0.99 | -0.85 | 14.60 | 44.96 | 49.59
16 0.88 -0.96 | 0.19 9.06 35.91 53.01

17 -0.99 | 0.82 -0.16 | 8.21 59.89 | 31.35

18 0.98 -0.92 | 0.90 7.94 33.89 | 47.32
19 0.99 -0.32 | 0.61 7.76 38.47 | 47.35
20 -0.91 | 0.90 -0.71 8.64 61.66 | 33.38

21 -0.92 | 0.76 -0.81 | 9.24 61.01 | 34.84

22 -0.96 | 0.73 -0.73 | 9.24 60.59 | 34.63
23 -0.83 | 0.95 -0.85 | 8.68 62.14 | 33.92
24 -0.95 | 0.67 -0.69 | 9.37 59.96 | 34.80

25 -0.93 | 0.86 -0.58 | 8.60 61.06 | 33.00

26 0.94 -0.59 | -1.00 | 10.37 | 43.77 | 64.42
27 0.41 -0.73 | -0.99 | 12.03 | 44.55 | 57.29
28 0.83 -0.78 | -0.95 | 10.85 | 42.69 | 63.33
29 -0.67 | 0.86 0.94 7.42 56.84 | 27.49

30 0.58 -0.52 | -0.98 | 11.19 | 45.27 | 57.89
31 0.93 -0.55 | -0.94 | 10.24 | 43.71 | 63.25
32 0.93 0.29 -0.92 | 9.15 48.54 | 57.24

33 -0.93 | 0.04 0.98 9.78 50.94 | 31.65

34 0.92 -0.66 | -0.93 | 10.39 | 42.98 | 63.72

35 0.84 -0.48 | -0.91 10.36 44.24 60.95

RC(x) = RC/(x) + RC,(x) + RC,(x) (43)
Hor T = [ 12.5,30,20 1. 8T AK—fbE B
WAIERE C

0.5 0.025 0.025
C = {o. 025 0.5 0. 025] (44)
0.025 0.025 0.5
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Table 9 Sobol values of sensitivity analysis
CM DM UM PM
il Y2 Y3 N1 Y2 Y3 il Y2 Y3 N Y2 Y3
X 0.298 | 0.579 | 0.154 | 0.286 | 0.577 | 0.163 | 0.280 | 0.643 | 0.168 | 0.289 | 0.585 | 0.167
% 0.266 | 0.599 | 0.098 | 0.262 | 0.629 | 0.102 | 0.268 | 0.643 | 0.099 | 0.274 | 0.662 | 0.107
X3 0.437 | 0.256 | 0.331 | 0.376 | 0.228 | 0.342 | 0.421 | 0.234 | 0.336 | 0.444 | 0.252 | 0.350

Hop g AR B € Hp Y L mT DLl 4 5% AR i
ARAT TR DL SCHR [ 56 . 45 A KU A ok R
Jo A5 2 PR ER, M 3 N E AR A AR A AL K (38) .
SRJG, M MATLAB T HA5 9 iy £ B s 8
AT A R S0, WG A R BT R 200,
RSBRFFN. AL B ESR 20 1k,
DLy M st A% Bk mY Ae e PR A — 3ok o &8

K 8 fryn. ME T CM J5 Bl UM J7 %, DM
T PM U7 20 IR AL BT 15 Pareto T VA Y
AEARLBE BTy, R BB AT AR DAk ok 7 v 9 2
AEXS B 4. NP AL AR R R, AR SCIT R 7 ik Y

(a)CM J5i%

(c¢) UM Jrik

Pareto ] ¥ ol AR | o 32 7 $ A8 f , 2% B H 15
Pareto fiff 52 5 A 7 L S AR. Pt , AR 3007 ik R
15 7 e iAs o 1 AT RLPE Y Pareto 4R i T
PE— XS Lo B, AR SCEH 5 PHAEL A R A 0T
[ Pareto i 4 e 2 1) Fe LA AR5, LA 20 kAl
e 2t SR 1 T i 22 247 6L (T30 w7 0 L S5 W i
A8 D 22 259 6 ) L A i 22 X2 0 ( S 0 o2 AT H A
(B M) A SRR X ) Jo s ot 2 A L L XU A
A FMEL 95 % FLAF X [i) (R BR CIL A1LEFR CIU) , A
LA R S R g bR, 0 He4s Ik O TERE
iR 10.

(b) DM J5ik

(d) PM i

E 8 REFEH Pareto BIiF
Fig. 8 Pareto fronts of different methods
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Table 10 Comparison of 20 optimization results
. - TN i 22 24 (L b 22 4916 iisieizbN DRSS JRE A
b oL
Nl || n | n E W | CIL Clu | ¥ | CL CIU
CM 181 0.10 | 0.42 | 0.13 | 1.67 | 9.25 | 16.31 | 189.23 | 189.19 | 189.28 | 165.18 | 165.14 | 165.22
DM 179 | 0.07 | 0.59 | 0.07 | 1.40 | 8.74 | 16.61 | 188.72 | 188.66 | 188.78 | 165.41 | 165.36 | 165.47
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Abstract; For multi-response quality improvement, this paper proposes a multi-response reliability-based ro-
bust design optimization (RBRDO) within an active learning multi-output Gaussian process ( MGP) modeling
framework. First, an active learning response surface modeling approach based on an improved D-optimal de-
sign is developed to enhance the utilization of experimental design points. Second, a covariance structure that
captures correlations is specified to build the MGP, the expressions of its predictive partial derivatives are de-
rived, and a risk cost function is formulated based on first-order second-moment theory. Then, a multivariate
quality loss function is defined from the MGP outputs, upon which a parameter optimization model is estab-
lished. Finally, a genetic algorithm is used to obtain the Pareto solution set, and the shortest distance method
is applied to determine the optimal solution. Simulation results indicate that the proposed method effectively
characterizes correlations among responses, improves the predictive accuracy of both the response surface and
derivative prediction models, and yields optimal input parameter settings that balance robustness and reliability.

Key words: multi-output Gaussian process model; active learning; reliability-based robust design optimiza-

tion; quality loss; risk cost



