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摘要： 针对多响应的质量改进问题，本文在多输出高斯过程建模框架下，提出了一种基于主动

学习的多响应可靠性稳健设计优化（ ｒｅｌｉａｂｉｌｉｔｙ⁃ｂａｓｅｄ ｒｏｂｕｓｔ ｄｅｓｉｇｎ ｏｐｔｉｍｉｚａｔｉｏｎ，ＲＢＲＤＯ）方法．
首先，开发基于改进 Ｄ⁃ｏｐｔｉｍａｌ 设计的主动学习响应曲面建模方法，以提升试验设计点的利用

效率；其次，构造考虑响应相关性的协方差结构，推导多输出高斯过程预测偏导数的表达式，并
结合一次二阶矩理论构建风险成本函数；然后，基于多输出高斯过程模型构建多元质量损失函

数，进而建立参数优化模型；最后，利用遗传算法获得 Ｐａｒｅｔｏ 解集，并采用最短距离法确定最优

解． 案例分析结果表明，所提方法有效刻画了响应间的相关性，提升了响应曲面模型和导数预

测模型的预测精度，获得了兼顾稳健性和可靠性的最优输入参数设置．
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０　 引　 言

稳健设计（ ｒｏｂｕｓｔ ｄｅｓｉｇｎ，ＲＤ）和可靠性设计

（ｒｅｌｉａｂｉｌｉｔｙ⁃ｂａｓｅｄ ｄｅｓｉｇｎ，ＲＢＤ）是实现产品质量持

续改进的关键技术［１］ ． 产品质量的稳健性和可靠

性改进，可以为生产和服务打下坚实的基础，提高

产品的综合竞争力［２， ３］ ． ＲＤ 方法主要目的是通过

对生产过程参数的优化，使得输出响应尽可能地

满足产品质量特性要求，同时最小化响应波

动［４， ５］ ． 而 ＲＢＤ 方法则通过优化过程参数，使得

输出响应尽可能地满足可靠度设计要求［６］ ． 单独

使用 ＲＤ 方法或者 ＲＢＤ 方法，无法获得同时满足

稳健性和可靠性要求的最优输入参数设置［７］ ． 因
此，集成的可靠性稳健设计优化（ ｒｅｌｉａｂｉｌｉｔｙ⁃ｂａｓｅｄ

ｒｏｂｕｓｔ ｄｅｓｉｇｎ ｏｐｔｉｍｉｚａｔｉｏｎ，ＲＢＲＤＯ）方法常被用于

实现产品全生命周期质量的稳健性和可靠性改

进． ＲＢＲＤＯ 方法以失效概率为约束函数，以质量

损失为目标函数，构建参数优化模型，以获得兼顾

稳健性和可靠性的最优解［８］ ． 然而，工程实践中

输入和输出之间的关系通常是高度复杂的，这为

失效概率的计算造成了极大的不便． 特别是针对

多响应 ＲＢＲＤＯ 问题，目前大多数方法还无法有

效刻画响应之间相关性对优化结果的影响，这极

有可能造成优化结果的稳健性和可靠性被高估．
针对产品质量改进中的可靠性稳健设计优化

问题，国内外学者提出了诸多理论方法． 彭茂林

等［９］结合稳健性、可靠性以及 ６ σ 设计思想，提出

了一种基于响应面理论的 ＲＢＲＤＯ 方法． Ｙｏｕｎ
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等［１０］将性能度量法和混合均值法相结合构建

ＲＢＤ 指标，获得了考虑不确定性的可靠性最优设

计． Ｄｕ 等［１１］提出了一种基于概率理论的逆可靠

性分析方法，改善了二阶灵敏度对 ＦＯＳＭ 方法的

限制． 随后，Ｙａｄａｖ 等［１２］ 将稳健设计与可靠性设

计融为一体，提出基于混合质量损失函数的 ＲＢＲ⁃
ＤＯ 模型，同时兼顾期望与偏差，以最小化质量损

失并提升设计效率． Ｓｈｉｎ 和 Ｌｅｅ［１３］ 构建了基于一

次二阶矩（ ｆｉｒｓｔ ｏｒｄｅｒ ａｎｄ ｓｅｃｏｎｄ ｍｏｍｅｎｔ，ＦＯＳＭ）
理论的性能函数，开展了道路最小曲线半径的可

靠性分析和优化． Ｙａｎｇ 和 Ｃｈｉｎｇ［１４］ 将分位数型统

计矩重构为两类逆可靠性分析方法，以提升

ＦＯＳＭ 方 法 的 精 度 和 效 率． Ｋｅｓｈｔｅｇａｒ 和

Ｃｈａｋｒａｂｏｒｔｙ［１５］提出一种基于有限度搜索技术的

ＦＯＳＭ 可靠性优化方法，提高了最优解的可靠性．
Ｌｉ 等［７］ 提出了一种基于直接概率积分法的 ＲＢＲ⁃
ＤＯ 方法，可高效同步计算响应统计矩、可靠度及

其灵敏度，进一步提升了最优解的有效性． 在基于

ＦＯＳＭ 理论的经典 ＲＢＲＤＯ 方法中，如何准确获得

最可能失效点 （ｍｏｓｔ ｐｒｏｂａｂｌｅ ｐｏｉｎｔ，ＭＰＰ） 是关

键［１６］ ． 因此，提高响应曲面模型的预测精度，以获

得更为准确的 ＭＰＰ 和失效概率，对改善参数优化

结果的有效性至关重要．
高斯过程（Ｇａｕｓｓｉａｎ ｐｒｏｃｅｓｓ， ＧＰ 或 Ｋｒｉｇｉｎｇ）

模型具有预测精度高和仿真成本少的优点，在产

品质量设计领域得到了广泛的应用［１７， １８］ ． 特别

是，ＧＰ 模型可以精确近似高度复杂的非线性输入

输出关系，为以响应曲面模型为基础的质量改进

方法提供了便利［１９］ ． Ｈｙｅｏｎ 和 Ｃｈａｉ［２０］提出一种基

于 ＧＰ 模型的一阶可靠性优化方法，结合主动约

束策略，拓展了统计矩方法在可靠性优化中的应

用． Ｅｃｈａｒｄ 等［２１］提出以 ＧＰ 替代模型为核心的可

靠性分析方法，并利用重要度抽样技术，实现小失

效概率的高效评估． Ｗａｎｇ 等［２２］ 将时变概率约束

转化为时不变约束，获得了动态情形下的最优解，
进一步扩展了 ＧＰ 模型在可靠性优化方面的应

用． Ｌｉ 等［２３］将时变纳入可靠性优化模型中，获得

了动态情形下的可靠性最优解，进一步扩展了 ＧＰ
模型在可靠性优化方面的应用． 李宝玉等［２４］ 将

ＧＰ 模型表示为张量积的形式，解决了梯度计算量

大以及可靠性分析困难的问题． 陆艺鑫等［２５］ 提出

了一种基于时变高斯过程模型的分层重要抽样方

法，以评估航空发动机涡轮轴失效概率． Ｈｏｎｇ
等［２６］提出了一种基于贝叶斯抽样技术的可靠性

设计优化方法，利用罚函数将约束转化为无约束

以降低模型复杂度，并结合高效采样策略，在多

峰、强非线性场景下显著提升求解精度与效率． 上
述研究利用 ＧＰ 建模技术构建输入参数和输出响

应之间的近似关系模型，获得了相对准确的 ＭＰＰ
和失效概率． 然而，针对多响应可靠性稳健设计优

化问 题 时， 标 准 高 斯 过 程 （ ｓｔａｎｄａｒｄ Ｇａｕｓｓｉａｎ
ｐｒｏｃｅｓｓ，ＳＧＰ）建模技术无法刻画各响应之间的相

关性，这极易导致响应曲面模型预测精度的高估，
故其所得优化结果的有效性值得商榷．

近年来，随着机器学习算法的发展，国内外学

者尝试开发具有主动学习能力的 ＧＰ 模型，以改

善响应曲面模型的预测精度［２７ － ２９］ ． 主动学习在统

计学中也被称为序贯试验设计法． 一般而言，主动

学习试验设计方法包括以下步骤［３０ － ３２］： １）构建

初始设计方案，例如空间填充设计，收集数据，并
建立初始模型；２）基于当前的拟合模型，更新指

定的设计准则，并通过优化准则以选择下一批设

计点； ３）收集数据并更新模型； ４）重复步骤 ２）和
步骤 ３），直到满足停止条件． 在步骤 ２）中使用的

设计准则应符合试验的目的． 在可靠性稳健设计

优化中，响应曲面模型的精度对获得准确的导数

预测值至关重要，Ｗａｎｇ 等［３３］ 提出基于 Ｕ 函数的

主动学习算法，以保证模型在分布参数变化范围

内的预测能力． Ｈａｇｈｉｇｈａｔ 等［３４］ 介绍了一类基于

物理信息神经网络的深度学习方法，提升了 ＧＰ
模型的预测精度． Ｋｏ 和 Ｋｉｍ［３５］ 提出一种基于深

度高斯过程的集成模型，通过对潜在变量进行连

续变换，捕捉响应曲面的非线性特征． Ｄｉｎｇ 等［３６］

开发了一种深度张量马尔可夫高斯过程建模方

法，以提升模型的运算效率． Ｇｎａｎａｓａｍｂａｎｄａｍ
等［３７］提出一种基于自动聚合程序的深度高斯过

程建模方法，以近似增材制造过程中输入参数和

输出响应之间的函数关系． Ｙａｎ 等［３８］ 提出一种深

度多阶段学习框架，综合考虑各阶段的不确定性，
以提升预测结果的准确性． Ｙｕｅ 等［３９］ 提出了基于
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方差的加权主动学习算法和 Ｄ⁃ｏｐｔｉｍａｌ 加权主动

学习算法，量化了不确定性对响应曲面模型的影

响． Ｃｈｅｎ 等［４０］ 选择侧重估计系数方差的 Ｄ⁃ｏｐｔｉ⁃
ｍａｌ（ＤＯ）设计方法，以提升 ＧＰ 模型的预测精度．
ＤＯ 算法在试验设计过程中重点考虑了极值、边
界等信息丰富区域的预测精度，这些区域也是响

应曲面模型误差的主要来源． 但是，ＤＯ 算法又极

易导致设计点的局部聚集，这不仅影响设计点的

使用效率，也为协方差矩阵求逆造成困难． 此外，
上述方法是基于标准 ＧＰ 模型开发的，无法有效

处理多响应的回归预测和参数优化问题． 综上，现
有的 ＲＢＲＤＯ 方法未充分考虑输出响应相关性和

设计点利用效率，这极有可能导致高估的响应曲

面模型，进而影响所得最优输入参数设置的有

效性．
本文拟在 ＧＰ 模型的框架下，围绕多输出建

模、主动学习建模、ＲＢＲＤＯ 建模以及参数优化四

个阶段，实现多质量特性的可靠性稳健设计优化．
首先，构建考虑响应相关性的多输出模型结构，利
用最大化最小距离增强的 Ｄ⁃ｏｐｔｉｍａｌ 设计，以提升

空间填充性，从而形成主动学习多输出高斯过程

（ｍｕｌｔｉ⁃ｏｕｔｐｕｔ Ｇａｕｓｓｉａｎ ｐｒｏｃｅｓｓ，ＭＧＰ）建模算法． 其
次，利用极大似然估计方法，估计模型超参数，建
立主动学习 ＭＧＰ 模型及其偏导数预测模型． 然
后，采用一次二阶矩方法，构建考虑响应相关性的

风险成本函数和多元质量损失函数，进而建立

ＲＢＲＤＯ 模型． 最后，利用多目标优化算法，获得

Ｐａｒｅｔｏ 解集，并采用最短距离法选取最优解． 本文

所提多输出建模方法改善了响应曲面模型的预测

精度，降低模型输出的不确定性． 同时，所提主动

学习建模算法提升了试验点的利用效率，适用于

试验成本高、样本稀缺场景下的参数优化问题． 本
文方法综合考虑了响应相关性、质量损失以及风

险成本对优化结果的影响，获得了兼顾稳健性和

可靠性的最优输入参数设置，为实现产品质量的

持续改进提供了技术支撑．

１　 多输出高斯过程建模

１． １　 经典高斯过程模型

标准的单变量 ＧＰ 模型中，假设有 ｍ 个 ｄ 维

输入为 Ｘ ＝ ［ｘ１，． ． ． ，ｘｍ］ Ｔ，ｘｉ ＝ ［ｘｉ，１，． ． ． ，ｘｉ，ｄ］ ，
ｉ ＝ １，． ． ． ，ｍ ． 对应的 ｍ 个输出响应为 ｙ ＝
［ｙ１，． ． ． ，ｙｍ］Ｔ ．输出响应 ｙ 与输入因子 ｘ０ 之间关

系为

ｙ（ｘ０） ＝ μ ＋ ｒＴｘ０ Ｒ
－１（ｙ － μ１） （１）

其 中 μ 为 预 测 响 应 均 值； ｒｘ０ ＝
（ｃｏｒ（ｘ０，ｘ１），． ． ． ，ｃｏｒ（ｘ０，ｘｍ）） Ｔ 为ｘ０ 和已知输入

ｘ 之间的 １ × ｍ 协方差关系；Ｒ 表示输入 ｘ 的 ｍ ×
ｍ 协方差矩阵；Ｒ ＝ σ２Ｋ，Ｋ 为 ｍ × ｍ 的协方差关

系；１ 为 ｍ 维元素为 １ 的向量．
ＧＰ 模型的协方差关系函数也被称为核函数，

常用的核函数有平方指数核（Ｓｑｕａｒｅｄ ｅｘｐｏｎｅｎｔｉａｌ
ｃｏｖａｒｉａｎｃｅ ｆｕｎｃｔｉｏｎ）、 马顿核 （Ｍａｔéｒｎ ｋｅｒｎｅｌ）、
γ⁃ 指数核（γ⁃ｅｘｐｏｎｅｎｔｉａｌ ｃｏｖａｒｉａｎｃｅ ｆｕｎｃｔｉｏｎ）
等［４１］ ． 以平方指数核为例，输入 ｘｉ 和ｘ ｊ 之间的协

方差关系可以表示为

ｋ（ｘｉ，ｘ ｊ） ＝ ｃｏｒ（ｘｉ，ｘ ｊ）

＝σ２ｅｘｐ ( －∑
ｄ

ｋ ＝１
（ｘｉ，ｋ －ｘｊ，ｋ）２ ｌ －２ｋ ／ ２ )

（２）
其中 σ 和 ｌｋ 是未知参数，分别表示模型的估计方

差和输入点在第 ｋ 个方向的重要程度， ［Ｋ］ ｉ，ｊ ＝
ｋ（ｘｉ，ｘ ｊ） ． 通常采用最大似然函数法估计模型未

知参数，负对数似然函数为

ｌ（Ｋ，μ ｜ ｙ，Ｘ） ＝ － １
２ ［ｍ ｌｎ（σ２） ＋ ｌｎ（Ｋ） ＋

１
σ２（ｙ－μ １）

Ｔ Ｋ－１（ｙ－μ１）］ （３）

然后，最小化 ｌ（Ｋ，μ ｜ ｙ，Ｘ） 即可获得模型未

知参数． 根据参数估计值，可得出任意输入ｘ０ 处

的预测方差

ｓ２ｘ０ ＝σ
２（１－ｒＴｘ０ Ｒ

－１ ｒｘ０ ＋（１－１
Ｔ Ｒ－１ ｒｘ０）

Ｔ ×
（１Ｔ Ｒ－１１） －１（１ － １Ｔ Ｒ－１ ｒｘ０）） （４）

１． ２　 多输出高斯过程模型

标准 ＧＰ 模型能较好地处理一维输出响应的

回归预测和参数优化问题． 但是，针对多输出响应

的可靠性稳健设计优化问题，该方法无法考虑输

出响应之间的相关性，如图 １ 所示． 因此，使用标

准 ＧＰ 构建多响应 ＲＢＲＤＯ 模型，极有可能导致模

型预测精度的不足，进而导致最优解稳健性的高

估． 为此，构建基于 ＭＧＰ 的 ＲＢＲＤＯ 模型，将能进
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一步提升参数优化结果的稳健性和可靠性．

（ａ）标准 ＧＰ 模型

（ｂ）多输出 ＧＰ 模型

图 １　 标准 ＧＰ 模型和 ＭＧＰ 模型

Ｆｉｇ． １ Ｓｔａｎｄａｒｄ ＧＰ ｍｏｄｅｌ ａｎｄ ＭＧＰ ｍｏｄｅｌ

本节考虑具有 ｋ 个输入和 ｎ 个输出类型的

ＭＧＰ 模型． 假定所有输出类型为平稳 ＧＰ 过程，这
意味着输出 ｙｇ 具有恒定的方差 σ２

ｇ ，且其（自）协
方差随着输入组合之间的距离而减小，如式（２）
所示． 此外，在 ＭＧＰ 中，不同类型的输出 ｙｇ（ ｘｉ）
和 ｙｇ

′（ｘ ｊ） （其中 ｇ，ｇ′ ＝ １，…，ｎ 且 ｇ ≠ ｇ′ ）在相

同或不同的输入组合下具有相互协方差， ｘｉ 与 ｘ ｊ

可以相同或不同． 以 ２ 个输出类型 （ ｎ ＝ ２ ）
为例［４２］

Ｃｏｖ（Ｙ（ｘｉ），Ｙ（ｘｊ）） ＝
ｃｏｖ（ｙ１（ｘｉ），ｙ１（ｘｊ）） ｃｏｖ（ｙ１（ｘｉ），ｙ２（ｘｊ））
ｃｏｖ（ｙ１（ｘｉ），ｙ２（ｘｊ）） ｃｏｖ（ｙ２（ｘｉ），ｙ２（ｘｊ））

é

ë
ê
ê

ù

û
ú
ú

（５）
当 ｘｉ ＝ ｘ ｊ 且 ｎ ＝ ２，那么２ × ２矩阵（Σ０） 不随

输入组合 ｘ 变化，式（５）可表示为

Σ０ ＝
σ２

１ σ１，２

σ１，２ σ２
２

é

ë
ê
ê

ù

û
ú
ú （６）

其中 σ１，２ ＝ ｃｏｖ（ｙ１，ｙ２） ． 在具有 ｎ 个输出的一般

情况下，任意输入 ｘｉ （ ｉ ＝ １，…，ｍ ）的（对称）协
方差矩阵为

Σ０ ＝

σ２
１ σ１，２ … σ１，ｎ

σ２
２ … σ２，ｎ

⋱ ︙
σ２

ｎ

é

ë

ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú

（７）

因此，在一般情况下，Ｙ 具有 ｍｎ × ｍｎ 协方差

矩阵

Σ０ … Ｃｏｖ（Ｙ（ｘ１），Ｙ（ｘｍ））
︙ ⋱ ︙

Ｃｏｖ（Ｙ（ｘ１），Ｙ（ｘｍ）） … Σ０

é

ë

ê
ê
ê

ù

û

ú
ú
ú

（８）
为了预测输入 ｘ０ 处的 ｎ 个输出响应，定义

ｎ ×ｍｎ 协方差矩阵

Σ０，ｍ，ｎ ＝ （Ｃｏｖ（Ｙ（ｘ０），Ｙ（ｘ１）），…，
Ｃｏｖ（Ｙ（ｘ０），Ｙ（ｘｍ））） （９）

根据最优线性无偏预测 （ ＢＬＵＰ），可得到

ＭＧＰ 模型的预测响应

ｙ︿（ｘ０） ＝ μ^ ＋ Σ０，ｍ，ｎ Σ －１
Y （Ｙ － Ｆ μ^^） （１０）

其中 μ^ 是 μ 的广义最小二乘 （ ｇｅｎｅｒａｌｉｚｅｄ ｌｅａｓｔ
ｓｑｕａｒｅｓ，ＧＬＳ）估计

μ^ ＝ （ＦＴ Σ －１
Ｙ Ｆ ） －１ ＦＴ Σ －１

Ｙ Ｙ （１１）
其中 Ｆ 是一个 ｍ 维单位向量与 ｎ × ｎ 单位矩阵的

Ｋｒｏｎｅｃｋｅｒ 积． ＭＧＰ 的预测方差为

ＭＳＰＥ︿ ［ ｙ^（ｘ０）］ ＝Σ
︿

０－Σ
︿

０，ｍ，ｎ (（Σ︿ Y） －１ ) Σ︿ Ｔ
０，ｍ，ｎ＋

ＵＦＴ （Σ︿ Ｙ） －１ＦＵＴ （１２）

其中 Ｕ ＝ Ｉｎ － Σ
⌒

０，ｍ，ｎ（Σ
⌒

Ｙ ） －１Ｆ ．
为了保证式（１０）和式（１２）的有效性，本文在

共区域化线性 （ ｌｉｎｅａｒ ｍｏｄｅｌ ｏｆ ｃｏｒｅｇｉｏｎａｌｉｚａｔｉｏｎ，
ＬＭＣ）不可分建模方法［４３］ 的框架下，构建协方差

矩阵以保证 Σ Y 的正定特性． 一个具有均值向量 μ
和协方差矩阵 Σ 的 ｎ 维高斯变量可以由包含 ｎ 个

独立同分布“标准”变量（零均值和单位方差）的
向量 Ｚ 生成，可以表示为 μ ＋ ＡＺ，Σ ＝ ＡＡＴ，Ａ 是
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一个对称矩阵［４４］ ． 假定 Ｙ 为任意输入下的 ｎ 维输

出，可表示为

Ｙ ＝ μ ＋ ＡＺ （１３）
其中 μ ＝ （μ１，…，μｎ） Ｔ 是 ＭＧＰ 模型的均值向量；
Ａ ＝ （ａｇ，ｇ′） 是一个对称正定矩阵；Ｚ 是一个具有

零均值和单位方差的相互独立的平稳高斯过程向

量． Ｚ 的高斯相关函数如式（２） ． 由式（２）可得多

输出 ＧＰ 模型的协方差关系矩阵 Ｋ 和超参数ｌｏ ＝
（ ｌｏ１，…，ｌｏｄ） Ｔ，ｏ ＝ １，…，ｎ ． 则式（５） 可以表示为

Ｃｏｖ（Ｙ（ｘｉ），Ｙ（ｘｊ）） ＝Ａｄｉａｇ［Ｋ（ｘｉ，ｘｊ；ｌ１），
…，Ｋ（ｘｉ，ｘｊ；ｌｎ）］ ＡＴ （１４）

若ｘｉ ＝ｘｊ，则式（２） 中 ｅｘｐ [－∑
ｄ

ｋ ＝ １
（ｘｉ，ｋ － ｘ ｊ，ｋ） ２ ｌ －２ｋ ／ ２ ]

＝ １ ． 此时，式（７）中 Σ０ 为

Ｃｏｖ（Ｙ（ｘｉ），Ｙ（ｘｉ）） ＝ Σ０ ＝ ＡＡＴ （１５）
因此 ｙｇ 和 ｙ′

ｇ 之间的协方差 σｇ，ｇ′ 可以表示为

σｇ，ｇ′ ＝ ∑
ｎ

ｏ ＝ １
ａｇ，ｏａｇ′，ｏ 　 （ｇ，ｇ′ ＝ １，…，ｎ） （１６）

特别地 ｒｇ，ｇ ＝ σ２
ｇ，σ２

ｇ 为 ｙｇ 的方差． 以 ｎ ＝ ２ 的

情况为例，协方差矩阵Σ０ 可以表示为

Σ０ ＝
ａ２
１，１ ＋ ａ２

１，２ ａ１，１ａ２，１ ＋ ａ１，２ａ２，２

ａ１，１ａ２，１ ＋ａ１，２ａ２，２ ａ２
２，１ ＋ａ２

２，２

é

ë
ê
ê

ù

û
ú
ú （１７）

由于矩阵 Ａ 是对称的，因此 ａｇ，ｇ′ ＝ ａｇ′，ｇ，元素

ａｇ，ｇ′（等于 ａｇ′，ｇ） 表示两个输出的方差和协方差．
以平方指数核函数和一维输入 ｘ 为例，则式（２）
变为

Ｋ（ｘｉ，ｘｊ；ｌｇ） ＝ ｅｘｐ［ － （ｘｉ － ｘｉ ′）２ｌ（ｇ） －２ｋ ／ ２］
＝ ｅｘｐ［ － ｌ（ｇ） －２ｋ ｄ２

ｉ，ｊ ／ ２］ （１８）

其中 ｄｉ，ｊ ＝ ｜ ｘｉ － ｘ ｊ ｜ ，可得协方差关系矩阵

Ｃｏｖ［Ｙ（ｘｉ），Ｙ（ｘ ｊ）］ ＝

　 Ａ
Ｋ（ｄｉ，ｊ；ｌ１） ０

０ Ｋ（ｄｉ，ｊ；ｌ２）
é

ë
ê
ê

ù

û
ú
úＡ

Ｔ
（１９）

将式（１７）代入式（１９）中可得

Ｃｏｖ［Ｙ（ｘｉ），Ｙ（ｘｊ）］ ＝

　
ａ２
１，１Ｋ（ｄｉ，ｊ；ｌ１） ＋ ａ２

１，２Ｋ（ｄｉ，ｊ；ｌ２）

ａ１，１Ｋ（ｄｉ，ｊ；ｌ１）ａ２，１ ＋ａ１，２Ｋ（ｄｉ，ｊ；ｌ２）ａ２，２

é

ë
ê
ê

ａ１，１Ｋ（ｄｉ，ｊ；ｌ１）ａ２，１ ＋ ａ１，２Ｋ（ｄｉ，ｊ；ｌ２）ａ２，２

ａ２
２，１Ｋ（ｄｉ，ｊ；ｌ１） ＋ ａ２

２，２Ｋ（ｄｉ，ｊ；ｌ２）
ù

û
ú
ú （２０）

如式（１５）所示，Ａ 是由 Σ０ 特征分解获得，这

确保了 Ａ 的正定特性． 对矩阵 Ａ 进行 Ｃｈｏｌｅｓｋｙ
变换， Ａ ＝ ＬＬＴ ． 确保 Ｌ 主对角线上的所有元素

为非负值，即可保证协方差矩阵的对称正定特

性，进而确保式（５） ～ 式（１２）中建模过程的有

效性． Ｓｖｅｎｓｏｎ 和 Ｓａｎｔｎｅｒ［４４］在最大似然估计过程

中施加约束 ｛Ｌ｝ ｉ，ｉ ≥０（ ｉ ＝ １，…，ｎ ），以保证对

角线元素为非负． 受限的对数似然函数可以表

示为

（Σ Y，μ ｜ Ｙ） ＝ ｌｎ Σ Ｙ ＋ ｌｎ ｜ ＦＴΣ －１
Ｙ Ｆ ｜ ＋

（Ｙ－Ｆμ^） Ｔ Σ －１
Ｙ （Ｙ－Ｆμ^） （２１）

最大化对数似然函数式（２１），可估计 ＭＧＰ
模型的超参数，进而可获得 ＭＧＰ 模型的预测响应

和方差，如式（１０）和式（１２）所示．

２　 主动学习多输出高斯过程建模

方法

在 ＲＢＲＤＯ 中，响应曲面模型和响应导数值

的预测精度往往决定了所得优化结果的准确性和

有效性［４５］ ． 为此，本节提出基于主动学习的 ＭＧＰ
建模方法，重点关注如何在有限试验成本情况下，
提升响应曲面模型和导数值的预测精度． ＤＯ 设

计是提升模型预测精度的高效算法之一，其通过

最大化信息矩阵 ｄｅｔ（ＭＴＭ） 的值来选择新的实

验点，矩阵 Ｍ 是在 ｍ 个设计点处的 ｋ 个基函数的

ｍ × ｋ 模型矩阵． 为了构建矩阵 Ｍ，以刻画输出响

应和其导数的信息，本文将响应值及其导数预

测值融入信息矩阵． 由于设计点的导数信息无

法通过观测获得，本文推导了 ＭＧＰ 模型的导函

数表达式，并使用预测导数值代替真实值，以改

进文献［４０］中所介绍的 ＤＯ 准则． 对于 ｍ 个设

计点，矩阵 Ｍｍ 包含 ｍ 行和 ｋ 列． 则 ＤＯ 的设计准

则为

ｘｍ＋１ ＝ ａｒｇ ｍａｘ
ｘ∈Ω

ｄｅｔ（ＭＴ
ｍ＋１ Ｍｍ＋１）

＝ ａｒｇ ｍａｘ
ｘ∈Ω

ｄｅｔ（ＭＴ
ｍ Ｍｍ ＋ ｍ（ｘ）ｍ（ｘ）Ｔ）

＝ ａｒｇ ｍａｘ
ｘ∈Ω

（１ ＋ ｍ （ｘ）Ｔ （ＭＴ
ｍ Ｍｍ） －１ｍ（ｘ）） ×

　 ｄｅｔ（ＭＴ
ｍ Ｍｍ） （２２）

其中 ｍ（ｘ） 是评估输入 ｘ性能的 ｋ × １ 的基函数向
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量． 由于 ｄｅｔ（ＭＴ
ｍ Ｍｍ） 由已知的 ｍ个设计点获得，

其对于 ｘｍ＋１ 是不变的，因此可以从目标函数中省

略． 简化式（２２）可得

ｘｍ＋１ ＝ ａｒｇ ｍａｘ
ｘ∈Ω

（１ ＋ ｍ（ｘ）Ｔ （ＭＴ
ｍ Ｍｍ） －１ｍ（ｘ））

（２３）
为了保证 （ＭＴ

ｍ Ｍｍ） －１ 有解，在式（２３）中加

入正则化项

ｘｍ＋１ ＝ ａｒｇ ｍａｘ
ｘ∈Ω

（１ ＋ ｍ （ｘ）Ｔ （ＭＴ
ｍ Ｍｍ ＋ ρＩｋ） －１ｍ（ｘ））

（２４）
其中 ρ 是所有输出响应模型的信噪比均值． ρｉ 是

第 ｉ 个输出模型的估计方差 σ２ 与现有 ｍ 个观测

值的样本方差 ｓ２ 之比．
尽管 ＤＯ 方法能提升 ＭＧＰ 模型的预测精度，

但其新增的设计点易聚集在设计空间的边界或极

值区域，从而可能影响整个响应曲面的预测精度，
并导致协方差矩阵的病态性． 为此，本文采用最大

化最小距离的填充设计准则（ｓｐａｃｅ⁃ｆｉｌｌｉｎｇ，ＳＦ） ［４６］

对 ＤＯ 设计方法加以改进，以提升设计点的空间

填充性． 最大化最小距离准则可表示为

ｘｍ＋１ ＝ ａｒｇ ｍａｘ
ｘ∈Ω ｉ ＝ １，…，ｍ

ｍｉｎ ｄｉｓｔ（ｘ，ｘｉ） （２５）

其中 ｄｉｓｔ（ｘ，ｘｉ） 是设计点的距离度量，本文采用

欧氏距离‖ｘ － ｘｉ‖２ ． 将 Ｄ⁃ｏｐｔｉｍａｌ 准则和最大化

最小距离准则线性组合获得新的设计准则

ｘｍ＋１ ＝ ａｒｇ ｍａｘ［α１ ｍｉｎ
ｉ ＝１，…，ｍ

‖ｘ － ｘｉ‖２
２

ｘ∈Ω

＋

α２（１ ＋ ｍ （ｘ）Ｔ （ＭＴ
ｍ Ｍｍ） －１ｍ（ｘ））］

（２６）
其中 α１ 和 α２ 是权重，本文设置 α１ ＝ α２ ＝ ０． ５ ． 为
了消除量纲的影响，对式（２６）中的两个准则进行

标准化

ｘｍ＋１ ＝ ａｒｇ ｍａｘ
ｘ∈Ω

α１

ＵＳ
ｍｉｎｉ ＝ １，…，ｍ ‖ｘ－ｘｉ‖２

２[ ＋

α２

ＵＤ
（１ ＋ ｍ（ｘ） Ｔ （ＭＴ

ｍ Ｍｍ） －１ｍ（ｘ）） ]

（２７）

其中 ＵＳ ＝ ｍａｘ
ｘ∈Ω

１
ｎ∑

ｍ

ｉ ＝ １
‖ｘ － ｘｉ‖２

２；ＵＤ ＝ ｍａｘ
ｍ∈Ｆ

（１ ＋

ｍＴ （ＭＴ
ｍ Ｍｍ） －１ｍ） ． 它们可以通过二次规划计算

获得． 本文所提主动学习过程如算法 １ 所示．

算法 １　 基于 ＭＧＰ 模型的主动学习算法

Ａｌｇｏｒｉｔｈｍ １ Ａｃｔｉｖｅ ｌｅａｒｎｉｎｇ ａｌｇｏｒｉｔｈｍ ｂａｓｅｄ ｏｎ ｔｈｅ ＭＧＰ ｍｏｄｅｌ

Ｉｎｐｕｔ：最大允许设计点数 Ｎｍａｘ ；每次添加设计点个数 Ｎａｄｄ ；每
个响应分配的设计个数 Ｂｉ，ｉ ＝ １，…，ｎ ；观测数据 Ｄ０ ＝
［Ｘ，Ｙ］ ；备选数据 Ω

Ｏｕｔｐｕｔ：ＭＧＰ 模型和导数预测模型（记为 ｄＭＧＰ 模型）
１． 利用观测数据 Ｄ０ 构建 ＭＧＰ 模型，并推导 ｄＭＧＰ 模型；
２． 　 ｗｈｉｌｅ ｍ ＜ Ｎｍａｘ ｄｏ
３． 　 　 根据现有观测数据 Ｄ０ ，构建新选择的设计点处的基函

数，并形成矩阵 Ｍｍ ；

４． 　 　 利用当前收集的数据拟合 ＭＧＰ 模型，获得 σ２ 和 ｓ２ ，并计

算 ρ 值；
５． 　 　 根据 ＭＧＰ 和 ｄＭＧＰ 模型，计算潜在设计点处的基函数值

ｍ１（ｘ），…，ｍｎ（ｘ） ．
６． 　 　 初始化：当前观测样本数量为 ｍ ；
７． 　 　 ｆｏｒ ｉ ＝ １，…，ｎ ｄｏ
８． 　 　 　 初始化：当前第 ｉ 个响应观测样本数量为 ｍｚｉ ；
９． 　 　 　 ｗｈｉｌｅ ｍｚｉ ＜ Ｂｉ ｄｏ
１０． 　 　 　 　 ｆｏｒ ｊ ＝ １，…，Ｎａｄｄ ｄｏ
１１． 　 　 　 　 　 更新 ＵＳ 和 ＵＤ ；
１２． 　 　 　 　 　 计算每个设计点处的准则值，使用式（２７）；
１３． 　 　 　 　 　 选择具有最大准则值的设计点加入 Ｄ０ ，并将其

从 Ω 中移除；
１４． 　 　 　 　 　 将 （ＭＴ

ｍ＋ｊ－１ Ｍｍ＋ｊ－１） －１ 更新为（ＭＴ
ｍ＋ｊ Ｍｍ＋ｊ） －１ ；

１５． 　 　 　 　 　 更新 ＭＧＰ 和 ｄＭＧＰ 模型；
１６． 　 　 　 　 ｅｎｄ ｆｏｒ
１７． 　 　 　 　 ｍｚｉ ← ｍｚｉ ＋ Ｎａｄｄ ；
１８． 　 　 　 ｅｎｄ ｗｈｉｌｅ
１９． 　 　 ｅｎｄ ｆｏｒ

２０． 　 获得新选择的∑
ｎ

ｉ ＝ １
Ｂｉ 个设计点；

２１． 　 更新： ｍ ← ｍ ＋ ∑
ｎ

ｉ ＝ １
Ｂｉ ；

２２． 　 ｅｎｄ ｗｈｉｌｅ
２３． 　 ｒｅｔｕｒｎ　 ＭＧＰ 模型和 ｄＭＧＰ 模型

３　 基于主动学习建模策略的可靠性

稳健设计优化

３． １　 ＲＢＲＤＯ 模型构建步骤

基于主动学习 ＭＧＰ 建模技术的多响应 ＲＢＲ⁃
ＤＯ 模型构建流程，如图 ２ 所示，详细步骤如下：

步骤 １　 确定试验方案，收集初始试验数据，
构建考虑响应相关性的初始 ＭＧＰ 模型．

步骤 ２　 利用算法 １ 中的主动学习方法选取

新的试验点，并更新试验数据集．
步骤 ３　 利用步骤 ２ 所得试验数据，更新步

骤 １ 中的 ＭＧＰ 模型，并推导其偏导数预测模型．
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步骤 ４　 根据指定的失效阈值，结合统计矩

理论和偏导数预测模型输出结果，构建风险成本

函数．
步骤 ５　 利用ＭＧＰ 模型的输出响应和方差，结

合响应的质量特性要求，建立多元质量损失函数．

步骤 ６ 　 结合质量损失函数和风险成本函

数，构建 ＲＢＲＤＯ 模型．
步骤 ７ 　 利用多目标优化算法进行全局优

化，获得 Ｐａｒｅｔｏ 解集． 计算欧氏距离，并使用最短

距离法确定最优输入参数设置．

图 ２　 本文所提方法流程图

Ｆｉｇ． ２ Ｆｌｏｗｃｈａｒｔ ｏｆ ｔｈｅ ｐｒｏｐｏｓｅｄ ｍｅｔｈｏｄ

３． ２　 失效风险成本

在可靠性设计中，可控变量的设计区域通常

被极限状态函数（ Ｇ（ｘ） ＝ ０ ）划分为安全区域

（ Ｇ（ｘ） ＞ ０ ）和失效区域（ Ｇ（ｘ） ＜ ０ ）两个部

分． 假定输入变量 ｘ ＝ ［ｘ１，． ． ． ，ｘｄ］ 服从正态分布

ｘｉ ～ Ｎ（μｘｉ， σｘｉ） ， ｉ ＝ １，． ． ． ，ｄ ． 设计点 ｘ′ ＝

［ｘ′
１，． ． ． ，ｘ′

ｄ］ 位于失效边界 Ｇ（ｘ） ＝ ０ 上，根据一

次二阶矩理论，非线性功能函数在设计点 ｘ′ 处的

泰勒展开式为

ＧＴ（ｘ） ≈ Ｇ（ｘ′） ＋∑
ｄ

ｉ ＝１

∂Ｇ（ｘ）
∂ｘｉ

( )
ｘ′
（ｘ － ｘ′） （２８）

记功能函数式 （ ２８ ） 的均值和标准差分别为

μＧ（ｘ） 和 σＧ（ｘ），且 Ｇ（ｘ′） ＝ ０ ． 输入位置 ｘ 处的

可靠度指标 γ（ｘ） 和失效概率 Ｐ（ｘ） 可表示为

γ（ｘ） ＝
μＧ（ｘ）
σＧ（ｘ）

＝
∑

ｄ

ｉ ＝ ｉ

∂Ｇ（ｘ）
∂ｘｉ

( )
ｘ′
（μｘ －ｘ′）

∑
ｄ

ｉ ＝ ｉ

∂Ｇ（ｘ）
∂ｘｉ

( )
２

ｘ′
σ２

ｘ[ ]
１ ／ ２

（２９）

Ｐ（ｘ） ＝ Φ［ － γ（ｘ）］ （３０）
其中 μｘ 和σｘ 分别为输入 ｘ 的均值和标准差；
Φ［·］ 是标准正态函数 ＣＤＦ 的逆函数；可靠度指

标 γ（ｘ） 用于衡量输入位置 ｘ 与功能函数设计点

或最可能失效点（ＭＰＰ）之间的几何距离． 本文采

用 ＨＬＲＦ（Ｈａｓｏｆｅｒ⁃Ｌｉｎｄ⁃Ｒａｃｋｗｉｔｚ⁃Ｆｉｅｓｓｌｅｒ） 迭代法

计算功能函数的 ＭＰＰ． ＨＬＲＦ 方法具有收敛效率

高、运算成本低等优点，尤其在处理非线性极限状

态函数时表现出较好的迭代性能． 它通过梯度信

息快速逼近 ＭＰＰ，并在计算过程中保持较高的计

算效率和稳定性． 有关 ＨＬＲＦ 方法的具体迭代算

法步骤，请参考文献［４７］．
本文利用失效概率 Ｐ（ｘ） 构造风险成本函

数，以衡量输入点所对应的潜在风险成本． 当输入

点与 ＭＰＰ 之间正向距离越大风险成本较小；反
之，正向距离越小风险成本越大． 当输入点与

ＭＰＰ 之间为负向距离时，将发生失效成本． 由于

本文主要关注如何在可靠区域内，获得综合考虑

稳健性和可靠度的最优输入设置． 因此，本节仅考

虑输入点与 ＭＰＰ 之间为正向距离的情况． 风险成

本函数如下

ＲＣ（ｘ） ＝ Ｂ（ｘ）Ｐ（ｘ） （３１）
其中 Ｂ（ｘ） 是产品不满足可靠区间限制所产生的

失效成本； Ｐ（ｘ） ＝ Φ［ － γ（ｘ）］ 为失效概率．
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由式（３１）可知，要求解风险成本函数，需先

获得极限状态函数的偏导数． 由于在工程实践中

该偏导数无法通过观测直接获取，因此本文在

ＭＧＰ 模型的框架下推导其偏导数预测表达式，具
体过程如下：

假定 ｘ０，ｔ 为输入ｘ０ 的第 ｔ 个因子， ｔ ＝ １，． ． ． ，
ｄ ． 极限状态功能函数在 ｘ０，ｔ 处的偏导数为

∂ｙ１（ｘ０）
∂ｘ０，ｔ

，． ． ． ． ，
∂ｙｐ（ｘ０）
∂ｘ０，ｔ

[ ] ＝
∂ｙ（ｘ０）
∂ｘ０，ｔ

（３２）

其中 ｙ（ｘ０） 为由 ＭＧＰ 模型拟合的功能函数，将式

（１０）代入式（３２）可得

∂ｙ１（ｘ０）
∂ｘ０，ｔ

，…，
∂ｙｐ（ｘ０）
∂ｘ０，ｔ

[ ]

　 ＝
∂（Ｆβ? ＋ ｒ（ｘ０） Ｒ －１（ｙ － Ｆβ?））

∂ｘ０，ｔ

　 ＝
∂ｒ（ｘ０）
∂ｘ０，ｔ

Ｒ －１（ｙ － Ｆβ?） （３３）

其中 ∂ｒ（ｘ０） ／ ∂ｘ０，ｔ 为 ｘ０，ｔ 偏导数和输入 Ｘ 之间的

协方差关系矩阵． ｘ０，ｔ 的偏导数和任意观测点ｘｇ 之

间的协方差关系可表示为

ｃｏｒ ∂ ｘ０

∂ｘ０，ｔ
，ｘｇ[ ] ＝

∂ｃｏｒ［ｘ０，ｘｇ］
∂ｘ０，ｔ

＝

　 τｂｉ，cｊｅｘｐ ( － ∑
ｄ

ｋ ＝ １
（ｘｂ

０，ｋ － ｘc
ｇ，ｋ）２ϕ －２

ｋ ／ ２ ) ×

　 　 （ － ϕ －２
ｔ （ｘｂ

０，ｔ － ｘc
ｇ，ｔ）） （３４）

其中 ｂ，c ＝ １，． ． ． ，ｐ 分别表示第 ｂ 个和第 c 个响

应． τｂｉ，cｊ 为响应之间的交叉相关度． 根据式（３４）
可获得输入 ｘ０，ｔ 和 Ｘ 之间的协方差关系矩阵

∂ｒ（ｘ０） ／ ∂ｘ０，ｔ ． 然后， ｘ０，ｔ 处的偏导数预测函数可

表示为

　 [∂ｙ１（ｘ０）
∂ｘ０，ｔ

，． ． ． ． ，
∂ｙｐ（ｘ０）
∂ｘ０，ｔ

] ＝
∂ｃｏｒ［ｘ０，Ｘ］

∂ｘ０，ｔ
×

　 　 　 　 　 Ｒ －１（ｙ － Ｆβ?） （３５）
将式（３５）代入式（３１），可得基于 ＭＧＰ 模型的风

险成本函数

ＲＣ（ｘ０） ＝ ＲＣ１（ｘ０） ＋ … ＋ ＲＣｐ（ｘ０）

＝∑
ｐ

ｈ ＝１
Ｂｈ（ｘ０）Φ －

∑
ｄ

ｔ ＝１

∂ｙｈ（ｘ０）
∂ｘ０，ｔ

æ
è
ç

ö
ø
÷

ｘ∗
（μｘ０ －ｘ

∗）

∑
ｄ

ｔ ＝１

∂ｙｈ（ｘ０）
∂ｘ０，ｔ

æ
è
ç

ö
ø
÷

２

ｘ∗
σ２

ｘ０[ ]
１ ／ ２

æ

è

ç
ç
çç

ö

ø

÷
÷
÷÷

（３６）

其中 Ｂｈ（ｘ０） 为第 ｈ 个响应不满足可靠区间限制

所产生的可靠度成本； ｙ（ｘ） 为根据可靠区间和

ＭＧＰ 建模技术构建的极限状态函数．
３． ３　 多元质量损失函数

质量损失函数用于度量偏离目标所造成的质

量损失，作为稳健性指标被广泛用于产品 ／过程的

质量改进［４８］ ． 针对多响应的稳健参数优化问题，
Ｗａｎｇ 等［４９］提出多元质量损失函数，以综合考虑

成本和不确定性对优化结果的影响，表达式如下

ＥＬ（ｘ） ＝ （ｙ?（ｘ） － Ｔ） ＴＣ（ｙ?（ｘ） － Ｔ） ＋
ｔｒａcｅ［Ｃ Σ ｙ?（ｘ）］ （３７）

其中 Ｔ 为响应的目标值向量；Ｃ 是成本矩阵，用以反

映经济成本因素； Σ ｙ?（ｘ） 是输入点处的 ｐ × ｐ 预测方

差协方差矩阵； ｐ 是响应个数．本文以多元质量损失

函数式（３７）为评价指标，综合权衡最优解的稳健性．
３． ４　 多响应 ＲＢＲＤＯ 模型

本文利用 ＭＧＰ 建模技术，构建考虑响应相关

性的偏导数预测模型． 基于失效概率构建风险成

本函数，以衡量输出响应的潜在成本． 进而建立综

合考虑质量损失、风险成本以及响应相关性的

ＲＢＲＤＯ 模型

ＲＣ（ｘ） ＝ ＲＣ１（ｘ） ＋． ． ． ＋ ＲＣｐ（ｘ）

ＥＬ（ｘ） ＝ （ｙ?（ｘ） － Ｔ） ＴＣ（ｙ?（ｘ） － Ｔ） ＋
　 ｔｒａcｅ［ＣΣ ｙ?（ｘ）］

ì

î

í

ïï

ïï

　 　 ｓ． ｔ． ｘ ∈ Ψ

（３８）

其中Ψ为输入变量设计区域． 利用ＭＡＴＬＡＢ 优化

工具箱中的全局优化算法，最小化式（３８），可获

得一组 Ｐａｒｅｔｏ 折中解． 本文利用最短距离法［５０］从

Ｐａｒｅｔｏ 解集中选取折中最优解． 首先，利用遗传算

法分别最小化式（３８）中的两个目标函数，获得单

目标理想解 （ｏｂｊｉｄｅａｌ１ ，ｏｂｊｉｄｅａｌ２ ） ． 然后，计算所有 Ｐａ⁃
ｒｅｔｏ 折中解与理想解 （ｏｂｊｉｄｅａｌ１ ，ｏｂｊｉｄｅａｌ２ ） 之间的欧几

里得距离，并选择距离最近的解为折中最优解．

４　 实例分析

４． １　 数值案例分析

本节通过 Ｂｏｈａｃｈｅｖｓｋｙ 测试函数，验证本文方法

对多响应偏导数的预测能力． 该案例由 ３ 个输出响

应和 ２ 个输入因子组成，测试函数表达式如下
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ｆ１ ＝ ｘ２１ ＋ ２ｘ２２ －０．３ｃｏｓ（３πｘ１） －０．４ｃｏｓ（４πｘ２） ＋０．７

ｆ２ ＝ ｘ２１ ＋ ２ｘ２２ － ０．３ｃｏｓ（３πｘ１）０．４ｃｏｓ（２πｘ２） ＋０．３

ｆ３ ＝ ｘ２１ ＋ ２ｘ２２ － ０．３ｃｏｓ（３πｘ１ ＋ ４πｘ２） ＋ ０．３

ì

î

í

ïï

ïï

（３９）
其中 ｘｉ ∈ ［ － １，１］ ， ｉ ＝ １，２ ． 根据式（３９），利用

切片拉丁方设计 （ ｓｌｉｃｅｄ Ｌａｔｉｎ ｈｙｐｅｒｃｕｂｅ ｄｅｓｉｇｎ，
ＳＬＨＤ）试验设计方案［５１］，产生初始观测样本点，
建立初始 ＭＧＰ 模型． 并利用所提主动学习设计方

法为每个响应增加新的样本点，并生成最终的训

练样本点． 为了说明所提方法的有效性，本文以均

方根误差（ ｒｏｏｔ ｍｅａｎ ｓｑｕａｒｅ ｅｒｒｏｒ，ＲＭＳＥ）和绝对

平均误差（ｍｅａｎ ａｂｓｏｌｕｔｅ ｅｒｒｏｒ，ＭＡＥ）为预测精度

指标进行对比． ＲＭＳＥ 和 ＭＡＥ 的计算表达式如下

ＲＭＳＥ ＝ １
ｉｔｅｒ∑

ｉｔｅｒ

ｕ ＝ １

１
ｎｕｍ∑

ｎｕｍ

ｉ ＝ １
（ｙｉ － ｙ＾ ｉ） ２

æ

è
ç

ö

ø
÷ （４０）

ＭＡＥ ＝ １
ｉｔｅｒ∑

ｉｔｅｒ

ｕ ＝ １

１
ｎｕｍ∑

ｎｕｍ

ｉ ＝ １
ｙｉ － ｙ＾ ｉ( ) （４１）

其中 ｙｉ 是真实的响应值； ｙ＾ ｉ 是预测响应值；ｎｕｍ
为测试点的个数，设置为 ２０；ｉｔｅｒ 为重复迭代次

数，设置为 ５０． 本节以 ９０、１０５、１２０ 训练样本为例

（利用主动学习准则为每个响应增加 １０ 个新的

试验点），计算 ＲＭＳＥ 值和 ＭＡＥ 值，以评估所提

方法的性能． 为了提升对比结果的准确性，以

５０ 次结果的 ＲＭＳＥ 和 ＭＡＥ 均值为最终的对比指

标，迭代过程中训练点和测试点均更新． 本文也给

出了其他三种方法的结果：经典的 ＧＰ 建模方法

（ｃｌａｓｓｉｃａｌ ＧＰ ｍｅｔｈｏｄ，ＣＭ） ［５２］、基于 ＤＯ 准则的

ＭＧＰ 建模方法（Ｄ⁃ｏｐｔｉｍａｌ ｍｅｔｈｏｄ，ＤＭ） ［５３］、基于

均匀空间填充准则的 ＭＧＰ 建模方法 （ ｕｎｉｆｏｒｍ
ｓｐａｃｅ⁃ｆｉｌｌｉｎｇ ｍｅｔｈｏｄ，ＵＭ） ［５４］ ． 此外，为了说明本文

ＰＭ 方法对 ＤＯ 方法的改进效果，图 ３ 中给出了

ＤＭ 和 ＰＭ 方法的试验结果． 如图 ３ 所示，ＤＭ 方

法所增加的 ３０ 个设计点大多聚集在边界区域，这
影响了试验点的利用效率． 而本文 ＰＭ 方法兼顾

了信息丰富区域的预测精度和设计点的空间填充

性，获得了更为有效的试验数据． 为了进一步对比

分析，本文给出了 ５０ 次重复迭代的 ＲＭＳＥ 值和

ＭＡＥ 值，如图 ４ ～ 图 ６ 所示． ＲＭＳＥ 均值和 ＭＡＥ
均值的对比结果，如表 １ ～表 ６ 所示．

（ａ） 响应 ｙ１
　

（ｂ） 响应 ｙ２
　

（ｃ） 响应 ｙ３
　图 ３　 ＰＭ 和 ＤＭ 方法的试验结果

Ｆｉｇ． ３ Ｅｘｐｅｒｉｍｅｎｔａｌ ｒｅｓｕｌｔｓ ｏｆ ＰＭ ａｎｄ ＤＭ ｍｅｔｈｏｄｓ

（ａ）响应的 ＭＡＥ 值
　

　
（ｂ）偏导数的 ＭＡＥ 值

　图 ４　 预测精度对比图 （９０ 个训练样本）
Ｆｉｇ． ４ Ｃｏｍｐａｒｉｓｏｎ ｏｆ ｐｒｅｄｉｃｔｉｏｎ ａｃｃｕｒａｃｙ （９０ ｔｒａｉｎｉｎｇ ｐｏｉｎｔｓ）
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（ｃ）响应的 ＲＭＳＥ 值
　

　
（ｄ） 偏导数的 ＲＭＳＥ 值

　

续图 ４

Ｆｉｇ． ４ Ｃｏｎｔｉｎｕｅｓ

（ａ）响应的 ＭＡＥ 值
　

　
（ｂ）偏导数的 ＭＡＥ 值

　

（ｃ）响应的 ＲＭＳＥ 值
　

　
（ｄ） 偏导数的 ＲＭＳＥ 值

　

图 ５　 预测精度对比图 （１０５ 个训练样本）

Ｆｉｇ． ５ Ｃｏｍｐａｒｉｓｏｎ ｏｆ ｐｒｅｄｉｃｔｉｏｎ ａｃｃｕｒａｃｙ （１０５ ｔｒａｉｎｉｎｇ ｐｏｉｎｔｓ）
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（ａ）响应的 ＭＡＥ 值
　

（ｂ）偏导数的 ＭＡＥ 值
　

（ｃ）响应的 ＲＭＳＥ 值
　

（ｄ） 偏导数的 ＲＭＳＥ 值
　

图 ６　 预测精度对比图 （１２０ 个训练样本）
Ｆｉｇ． ６ Ｃｏｍｐａｒｉｓｏｎ ｏｆ ｐｒｅｄｉｃｔｉｏｎ ａｃｃｕｒａｃｙ （１２０ ｔｒａｉｎｉｎｇ ｐｏｉｎｔｓ）

表 １　 不同方法的 ＭＡＥ 值 （９０ 个训练样本）
Ｔａｂｌｅ １ ＭＡＥ ｖａｌｕｅｓ ｏｆ ｄｉｆｆｅｒｅｎｔ ｍｅｔｈｏｄｓ （９０ ｔｒａｉｎｉｎｇ ｐｏｉｎｔｓ）

Ｍｅｔｈｏｄ
ＭＡＥ

ｙ１ ｙ２ ｙ３ ∂ｙ１ ／ ∂ｘ１ ∂ｙ１ ／ ∂ｘ２ ∂ｙ２ ／ ∂ｘ１ ∂ｙ２ ／ ∂ｘ２ ∂ｙ３ ／ ∂ｘ１ ∂ｙ３ ／ ∂ｘ２
ＣＭ ０． ０８５ ３ ０． １８３ ６ ０． １８２ ７ ０． ５４１ ８ ０． ８８８ ３ １． ４４１ ４ １． ５６７ ４ １． ３７５ ５ １． ６１８ ２

ＤＭ ０． ０８２ ４ ０． １３１ １ ０． １８６ ９ ０． ６０２ ０ ０． ８７１ １ １． ０９９ ５ １． ３７２ ０ １． ５６５ ９ ２． １２４ １

ＵＭ ０． ０４４ １ ０． １１１ ７ ０． １７０ ７ ０． ３２６ ０ ０． ６３２ ９ ０． ８９８ ２ １． ３５５ １ １． ２８８ ３ ２． ０４１ ４

ＰＭ ０． ０３０ ９ ０． ０９８ ５ ０． １２６ ０ ０． ２８２ ７ ０． ４６９ ０ ０． ７８３ ７ １． ２７７ ６ １． １８０ ５ １． ５０３ ７

表 ２　 不同方法的 ＲＭＳＥ 值 （９０ 个训练样本）
Ｔａｂｌｅ ２ ＲＭＳＥ ｖａｌｕｅｓ ｏｆ ｄｉｆｆｅｒｅｎｔ ｍｅｔｈｏｄｓ （９０ ｔｒａｉｎｉｎｇ ｐｏｉｎｔｓ）

Ｍｅｔｈｏｄ
ＲＭＳＥ

ｙ１ ｙ２ ｙ３ ∂ｙ１ ／ ∂ｘ１ ∂ｙ１ ／ ∂ｘ２ ∂ｙ２ ／ ∂ｘ１ ∂ｙ２ ／ ∂ｘ２ ∂ｙ３ ／ ∂ｘ１ ∂ｙ３ ／ ∂ｘ２
ＣＭ ０． ０９８ ６ ０． １８１ ８ ０． ２４９ １ ０． ５９４ ６ １． ２５８ ２ １． ２１０ ０ １． ９９９ １ １． ６０９ ４ ２． ５８０ ９

ＤＭ ０． ０８６ ５ ０． １７６ ７ ０． ２０７ ３ ０． ５７２ ５ １． ０２０ ３ １． ３８０ ６ １． ８７６ ０ １． ８１９ ８ ２． ２６１ ９

ＵＭ ０． ０８０ ９ ０． ２０７ ９ ０． ２３２ １ ０． ６１５ ４ １． １０２ ４ １． ３６１ ７ ２． ２２３ ８ １． ７６４ ２ ２． ６７１ ５

ＰＭ ０． ０７１ １ ０． １５２ ９ ０． １７９ ８ ０． ４３４ ３ １． １０８ ２ １． ０８０ ３ １． ７０３ ９ １． ５１７ ７ ２． １１５ ３
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表 ３　 不同方法的 ＭＡＥ 值 （１０５ 个训练样本）
Ｔａｂｌｅ ３ ＭＡＥ ｖａｌｕｅｓ ｏｆ ｄｉｆｆｅｒｅｎｔ ｍｅｔｈｏｄｓ （１０５ ｔｒａｉｎｉｎｇ ｐｏｉｎｔｓ）

Ｍｅｔｈｏｄ
ＭＡＥ

ｙ１ ｙ２ ｙ３ ∂ｙ１ ／ ∂ｘ１ ∂ｙ１ ／ ∂ｘ２ ∂ｙ２ ／ ∂ｘ１ ∂ｙ２ ／ ∂ｘ２ ∂ｙ３ ／ ∂ｘ１ ∂ｙ３ ／ ∂ｘ２

ＣＭ ０． ０５６ ４ ０． ０７９ ５ ０． １０８ ８ ０． ４１４ ３ ０． ６４３ ８ ０． ６６２ ７ ０． ９９３ ９ ０． ９２１ ０ １． ４２０ ３

ＤＭ ０． ０３４ ９ ０． １１２ ９ ０． １４４ ８ ０． ３０６ ４ ０． ４０８ ６ ０． ８４５ ５ １． １４７ ３ １． ０９５ ０ １． ６２４ ３

ＵＭ ０． ０２９ ８ ０． ０８４ １ ０． １０６ ６ ０． ２３８ ６ ０． ４６６ ３ ０． ７０３ ４ １． ０１６ ５ １． ００６ ９ １． ３１１ ７

ＰＭ ０． ０２９ １ ０． ０５９ ３ ０． ０９８ ７ ０． ２２５ ０ ０． ４６４ ８ ０． ５２１ ２ ０． ７９０ ６ ０． ８４９ ６ １． ３３９ ５

表 ４　 不同方法的 ＲＭＳＥ 值 （１０５ 个训练样本）
Ｔａｂｌｅ ４ ＲＭＳＥ ｖａｌｕｅｓ ｏｆ ｄｉｆｆｅｒｅｎｔ ｍｅｔｈｏｄｓ （１０５ ｔｒａｉｎｉｎｇ ｐｏｉｎｔｓ）

Ｍｅｔｈｏｄ
ＲＭＳＥ

ｙ１ ｙ２ ｙ３ ∂ｙ１ ／ ∂ｘ１ ∂ｙ１ ／ ∂ｘ２ ∂ｙ２ ／ ∂ｘ１ ∂ｙ２ ／ ∂ｘ２ ∂ｙ３ ／ ∂ｘ１ ∂ｙ３ ／ ∂ｘ２

ＣＭ ０． ０６３ ９ ０． １４２ ２ ０． １６７ ４ ０． ４６７ ２ １． １３５ ０ １． ０６７ ７ １． ６３３ ７ １． ４１３ ６ １． ９３５ １

ＤＭ ０． ０４１ ４ ０． １４３ ９ ０． １６１ ２ ０． ３３２ ５ ０． ６１６ ８ １． １８９ ９ １． ５３０ ６ １． ４１９ ３ １． ７５６ ８

ＵＭ ０． ０３４ １ ０． １２６ ６ ０． １７６ １ ０． ２９６ １ ０． ６６２ ７ ０． ９４７ ８ １． ５５７ ３ １． ４１１ ０ ２． １６３ ３

ＰＭ ０． ０２８ ９ ０． ０９８ ４ ０． １４４ ３ ０． ２９１ ８ ０． ６２５ ６ ０． ８５２ ３ １． １９３ ７ １． １５７ ８ １． ６５２ ２

表 ５　 不同方法的 ＭＡＥ 值 （１２０ 个训练样本）
Ｔａｂｌｅ ５ ＭＡＥ ｖａｌｕｅｓ ｏｆ ｄｉｆｆｅｒｅｎｔ ｍｅｔｈｏｄｓ （１２０ ｔｒａｉｎｉｎｇ ｐｏｉｎｔｓ）

Ｍｅｔｈｏｄ
ＭＡＥ

ｙ１ ｙ２ ｙ３ ∂ｙ１ ／ ∂ｘ１ ∂ｙ１ ／ ∂ｘ２ ∂ｙ２ ／ ∂ｘ１ ∂ｙ２ ／ ∂ｘ２ ∂ｙ３ ／ ∂ｘ１ ∂ｙ３ ／ ∂ｘ２

ＣＭ ０． ０２８ ５ ０． ０７３ ９ ０． １０９ ８ ０． ２０８ ３ ０． ４３７ ０ ０． ５６４ １ ０． ９３９ ３ ０． ９１８ ０ １． ２６８ ２

ＤＭ ０． ０３２ １ ０． ０８０ ２ ０． １０８ ８ ０． ２６１ ９ ０． ４０４ ５ ０． ６２２ ９ ０． ８６４ ６ ０． ９０７ ７ １． ２０２ ８

ＵＭ ０． ０２３ ９ ０． ０５１ ６ ０． ０７３ ７ ０． １８２ ７ ０． ３８３ ３ ０． ４３４ １ ０． ７０６ ６ ０． ７２６ ６ ０． ９５９ ２

ＰＭ ０． ０２０ ６ ０． ０４４ ７ ０． ０６６ ９ ０． １７６ ８ ０． ３６９ ３ ０． ３５６ ９ ０． ６１０ ５ ０． ７０８ ７ ０． ８７６ ２

表 ６　 不同方法的 ＲＭＳＥ 值 （１２０ 个训练样本）
Ｔａｂｌｅ ６ ＲＭＳＥ ｖａｌｕｅｓ ｏｆ ｄｉｆｆｅｒｅｎｔ ｍｅｔｈｏｄｓ （１２０ ｔｒａｉｎｉｎｇ ｐｏｉｎｔｓ）

Ｍｅｔｈｏｄ
ＲＭＳＥ

ｙ１ ｙ２ ｙ３ ∂ｙ１ ／ ∂ｘ１ ∂ｙ１ ／ ∂ｘ２ ∂ｙ２ ／ ∂ｘ１ ∂ｙ２ ／ ∂ｘ２ ∂ｙ３ ／ ∂ｘ１ ∂ｙ３ ／ ∂ｘ２

ＣＭ ０． ０８９ １ ０． １１５６ ０． １５１ ０ ０． ６６４ ２ ０． ８７０ ３ ０． ９４７ ３ １． １１２ ９ １． ２８４ ３ １． ４３２ ３

ＤＭ ０． ０４２ ０ ０． １１３ ８ ０． １４７ ０ ０． ３４０ ８ ０． ５０３ ０ ０． ８４１ ３ １． １１９ ８ １． ２５５ ６ １． ４６５ ７

ＵＭ ０． ０３４ １ ０． ０６６ ４ ０． ０９０ ９ ０． ２７４ ８ ０． ６６８ ４ ０． ６２１ ２ ０． ９１１ ２ ０． ９１３ ６ １． ２０２ ７

ＰＭ ０． ０３１ ３ ０． ０４０ ３ ０． ０６７ ６ ０． ２４５ ９ ０． ６１０ ７ ０． ３８８ ４ ０． ６４９ １ ０． ６６０ ８ ０． ９９５ ４
　

　 　 如图 ４ ～ 图 ６ 所示，随着试验点样本数量的

增加，所有方法的响应和偏导数的预测精度均有

所提升． 在相同样本数量下，各方法均获得了较好

的响应预测精度，而偏导数的预测精度相对较差．
这是由于偏导数预测模型的协方差函数更为复

杂，导致精确获得其预测值更为困难． 由表 １ ～

表 ６可知，不同样本数量下，本文所提 ＰＭ 方法获

得了除 ∂ｙ１ ／ ∂ｘ２ 外的其他指标的最小均值． 尽管

ＰＭ 方法所得 ∂ｙ１ ／ ∂ｘ２ （ＲＭＳＥ 值和 １０５ 训练样本

下的 ＭＡＥ 值）要大于 ＤＭ 方法，但二者之间差距

非常小，这表明了本文方法的有效性． 由于 ＣＭ 方

法无法考虑多个输出响应之间的相关性，导致其
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预测精度不如本文方法． ＤＭ 方法在试验过程中

重点考虑了信息丰富区域的预测精度，ＵＭ 方法

则更加关注设计区域的填充均匀性，故上述几种

方法的设计策略要差于本文方法． 而本文 ＰＭ 方

法不仅考虑了响应之间的相关性，而且兼顾了试

验点的使用效率，故其获得了较高的预测精度． 同
时，相较于偏导数的预测精度，本文方法对响应预

测精度的提升更为明显． 另一方面，在表 １ ～ 表 ６
中本文方法预测精度提升比例最大值为 ６５. １％
（１２０ 个训练样本下 ｙ２ 的 ＲＭＳＥ 值），提升比例最

小值为 １． ４％ （１０５ 个训练样本下 ∂ｙ１ ／ ∂ｘ１ 的

ＲＭＳＥ 值）． 表 １ 中本文 ＰＭ 方法相较于 ＣＭ、ＤＭ、
ＵＭ 方法的改进比例均值（不含 ∂ｙ１ ／ ∂ｘ２ ）分别为

３４. ３％、３２． ８％、１６． ８％；表 ２ 中相应的改进比例

均值分别为 １８． ５％、１５． ３％、２１． ２％；表 ３ 中相应

的改进比例均值分别为 ２３％、２９％、１３． ３％；表 ４
中相应的改进比例均值分别为 ２７． １％、１９． ９％、
１６． ５％；表 ５ 中相应的改进比例均值为 ３０． ９％、
３４％、１０． ３％；表 ６ 中相应的改进比例均值为

５３. ５％、４３． ４％、２４． ３％． 因此，本文方法在响应值

和偏导数值的预测精度方面具有明显的提升． 为
比较计算效率，图 ７ 给出了各方法完成单次试验

设计迭代的运行时间（ ｓ）． 所有结果均在同一硬

件环境下进行（台式机：Ｉｎｔｅｌ Ｃｏｒｅ ｉ７ － １３７００Ｋ，
３. ４０ ＧＨｚ；内存 ３２ ＧＢ）．

图 ７　 不同方法的计算效率

Ｆｉｇ． ７ Ｃｏｍｐｕｔａｔｉｏｎａｌ ｅｆｆｉｃｉｅｎｃｙ ｏｆ ｄｉｆｆｅｒｅｎｔ ｍｅｔｈｏｄｓ

由于 ＣＭ 方法采用经典响应曲面建模策略，
其试验设计过程只需执行一次抽样，且模型结构

相对简单，故其消耗的计算成本是所有方法中最

少的． 而 ＤＭ、ＵＭ 及 ＰＭ 方法均是基于主动学习

算法框架的建模方法，需要在试验过程中迭代更

新响应曲面模型，故这三种方法消耗的计算成本

相对较多． 图 ７ 中 ＤＭ、ＵＭ 及 ＰＭ 方法所消耗的

最大 时 间 成 本 分 别 为 ２９２． ７５ ｓ、 ３４３． ０８ ｓ、
２７６. ７６ ｓ，均远远大于 ＣＭ 方法． 另一方面，相较

于另外两种主动学习方法（ＤＭ 和 ＵＭ），本文 ＰＭ
方法并未消耗过多的运算成本，故本文方法的计

算效率和其他主动学习建模方法几乎相同． 此外，
由于参数优化过程中不需要迭代更新响应曲面模

型，故各种方法在优化过程中所消耗的时间相差

不大（将在下一节进行对比分析）． 尽管本文方法

耗费了更多的计算成本，但其提升了响应曲面模

型的预测精度，为构建有效的 ＲＢＲＤＯ 模型提供

了坚实的基础．
４． ２　 工程案例分析

该工程案例研究了在钛合金薄板上进行微纳

制孔实验的可靠性稳健设计优化问题［５５］ ． 实验过

程包括 ３ 个可控变量：给进速度 ｘ１ （ｍｍ ／ ｍｉｎ）、轴
速 ｘ２ （ｒｐｍ）和辅助气压 ｘ３ （ｂａｒｓ）． 假设各可控变

量服从正态分布 ｘｉ ～ Ｎ（μｘｉ，σｘｉ），ｉ ＝ １，２，３ ，且
设计容差和标准差分别为 δｘｉ ＝ ± ０． １μｘｉ 和 σｘｉ ＝
δｘｉ ／ ３， 可控变量因子水平如表 ７ 所示． 该过程的

３ 个输出响应为：推力 ｙ１ （Ｎ）、超切 ｙ２ （μｍ）和圆

度 ｙ３ （μｍ）． 响应 ｙ１ 表示制孔过程轴相推力，为望

目质量特性，其目标值设置为 １２． ５． 同时较大的

ｙ１ 易损坏钻头，而较小的 ｙ１ 又无法满足生产效率

要求． 故为了保证生产过程的可靠度要求， ｙ１ 的

可靠区间设置为 ｙ１ ∈［１０，１５］ ． 响应 ｙ２ 表示钻头

半径和入孔半径之间的差，为望小质量特性，其目

标值设置为 ３０． 较大的 ｙ２ 易导致圆孔形状的不规

则，产生失效的不合格产品，其可靠区间设置为

ｙ２ ∈ ［０，４５］ ． 响应 ｙ３ 表示孔的最大内切圆直径

与最小外接圆直径之间的差值，为望小质量特性，
目标值设置为 ２０． ｙ３ 值越小，产品的可靠度表现

越好，其可靠区间为 ｙ３ ∈ ［０，３８］ ．
表 ７　 可控变量因子水平

Ｔａｂｌｅ ７ Ｌｅｖｅｌｓ ｏｆ ｃｏｎｔｒｏｌｌａｂｌｅ ｖａｒｉａｂｌｅｓ

可控变量
水平

－ １ ０ １
ｘ１ ５ １０ １５
ｘ２ ２ ０００ ３ ５００ ５ ０００
ｘ３ ２ ４ ６
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　 　 当响应落在指定区间之外时，将产生质量损

失． 同时，当失效概率大于 ０ 时，将产生相应的失

效风险成本． 因此，本实验的目的是在设计变量可

行域内寻找一组最优输入参数设置，尽可能地减

少风险成本和质量损失，以提升产品 ／过程的稳健

性和可靠性． 响应曲面模型是实现可靠性稳健设

计优化的基础，其预测精度对所得最优输入参数

设置的有效性至关重要． 因此，本节采用主动学习

建模方法，以提升模型的预测精度，进而改善所得

最优解的稳健性和可靠性． 首先，利用 ＳＬＨＤ 方法

选取 ５ 个初始试验点；然后，利用算法 １ 中所提主

动学习方法分别对每个响应增加 １０ 个试验点，最
终可获得 ３５ 个训练样本点，试验结果如表 ８ 所

示． 为了说明该案例中输入参数对输出响应的影

响，本文对输入—输出关系进行了敏感性分析． 首
先，使用表 ８ 中的试验数据拟合 ＭＧＰ 模型；然后，
采用随机抽样方法选取 ２００ 个测试点，用于敏感

性分析；最后，计算 Ｓｏｂｏｌ 指数以衡量敏感性，结
果见表 ９． 由表 ９ 可知，输入参数 ｘ１ 对响应 ｙ１ 和 ｙ２

的影响较大，对响应 ｙ３ 的影响适中． 输入参数 ｘ２

对响应 ｙ１ 和 ｙ２ 的影响较大，对响应 ｙ３ 的影响相对

较小． 输入参数 ｘ３ 对所有响应均有较为显著的影

响． 本案例所得 Ｓｏｂｏｌ 指数的最小值为 ０． ０９８（输
入参数 ｘ２ 对响应 ｙ３ 的影响）． 总体而言，表 ９ 中的

Ｓｏｂｏｌ 指数整体较大，未出现小于常用阈值（０． ０１
或 ０． ０５）的情形，表明该案例中各输入参数对输

出响应均有较为明显的影响． 另一方面，不同方法

所得的 Ｓｏｂｏｌ 指数虽略有不同，但相对大小与变

化趋势基本一致，从而表明表 ９ 的敏感性分析结

果具有良好的稳健性． 针对该工程案例，构造极限

状态函数如下

Ｇ１
ｙ１（ｘ） ＝ ｙ１（ｘ） － １０

Ｇ２
ｙ１（ｘ） ＝ １５ － ｙ１（ｘ）

Ｇｙ２（ｘ） ＝ ４５ － ｙ２（ｘ）

Ｇｙ３（ｘ） ＝ ３８ － ｙ３（ｘ）

（４２）

其中 ｙｐ（ｘ） 为 ＭＧＰ 模型的第 ｐ 个响应． 将模型输

出代入 ＨＬＲＦ 算法求解式（４２）的 ＭＰＰ 点为（ －
０. ０３， － ０． ０５， － ０． ０３），（ － ０． ７２， － １， － ０． ６３），
（０． １１， － ０． １８，０． ０７），（ － ０． １，０． ０８，０． ０９）． 根据

式（３６）构建风险成本函数

表 ８　 试验设计和结果

Ｔａｂｌｅ ８ Ｅｘｐｅｒｉｍｅｎｔａｌ ｄｅｓｉｇｎ ａｎｄ ｒｅｓｕｌｔｓ

Ｎｏ．
输入变量 输出响应

ｘ１ ｘ２ ｘ３ ｙ１ ｙ２ ｙ３
１ － ０． ５６ ０． ０６ ０． ６０ ９． ７２ ４９． ２４ ３３． ０２

２ － ０． ７４ ０． ２５ ０． ４３ ９． ４６ ５２． １１ ３２． ５５

３ ０． １７ － ０． ４０ ０． １８ １０． １４ ４２． ６８ ４１． ９０

４ ０． ３５ ０． ９７ － ０． ２５ ７． ９０ ５２． ９４ ３８． ７８

５ ０． ８５ － ０． ８２ － ０． ７２ １０． ４２ ４１． ０６ ６１． ３９

６ － ０． ８６ － ０． ９８ － ０． ９５ １５． ５２ ４６． ８１ ４９． ０５

７ － ０． ９８ ０． ８１ － ０． ９５ ９． ２７ ６２． ２５ ３５． １２

８ １． ００ ０． ９９ ０． ９６ ６． ６８ ４６． ６８ ３９． ０４

９ － ０． ９５ － ０． ９７ － ０． ３５ １４． ５４ ４４． ５６ ４４． ３９

１０ ０． ９３ ０． ９８ － ０． ５４ ７． ８０ ５０． ８３ ４９． １５

１１ － ０． ３６ － ０． ９６ － ０． ９３ １４． ３６ ４５． ０７ ５０． ９５

１２ － ０． ８０ － ０． ８４ － ０． ９９ １５． ０３ ４７． ９０ ４８． ４９

１３ － ０． ８４ － ０． ９０ － ０． ４７ １４． ３２ ４５． １９ ４４． ８７

１４ － ０． ７３ － ０． ９７ － ０． ２５ １３． ９７ ４３． ２５ ４４． ０３

１５ － ０． ５０ － ０． ９９ － ０． ８５ １４． ６０ ４４． ９６ ４９． ５９

１６ ０． ８８ － ０． ９６ ０． １９ ９． ０６ ３５． ９１ ５３． ０１

１７ － ０． ９９ ０． ８２ － ０． １６ ８． ２１ ５９． ８９ ３１． ３５

１８ ０． ９８ － ０． ９２ ０． ９０ ７． ９４ ３３． ８９ ４７． ３２

１９ ０． ９９ － ０． ３２ ０． ６１ ７． ７６ ３８． ４７ ４７． ３５

２０ － ０． ９１ ０． ９０ － ０． ７１ ８． ６４ ６１． ６６ ３３． ３８

２１ － ０． ９２ ０． ７６ － ０． ８１ ９． ２４ ６１． ０１ ３４． ８４

２２ － ０． ９６ ０． ７３ － ０． ７３ ９． ２４ ６０． ５９ ３４． ６３

２３ － ０． ８３ ０． ９５ － ０． ８５ ８． ６８ ６２． １４ ３３． ９２

２４ － ０． ９５ ０． ６７ － ０． ６９ ９． ３７ ５９． ９６ ３４． ８０

２５ － ０． ９３ ０． ８６ － ０． ５８ ８． ６０ ６１． ０６ ３３． ００

２６ ０． ９４ － ０． ５９ － １． ００ １０． ３７ ４３． ７７ ６４． ４２

２７ ０． ４１ － ０． ７３ － ０． ９９ １２． ０３ ４４． ５５ ５７． ２９

２８ ０． ８３ － ０． ７８ － ０． ９５ １０． ８５ ４２． ６９ ６３． ３３

２９ － ０． ６７ ０． ８６ ０． ９４ ７． ４２ ５６． ８４ ２７． ４９

３０ ０． ５８ － ０． ５２ － ０． ９８ １１． １９ ４５． ２７ ５７． ８９

３１ ０． ９３ － ０． ５５ － ０． ９４ １０． ２４ ４３． ７１ ６３． ２５

３２ ０． ９３ ０． ２９ － ０． ９２ ９． １５ ４８． ５４ ５７． ２４

３３ － ０． ９３ ０． ０４ ０． ９８ ９． ７８ ５０． ９４ ３１． ６５

３４ ０． ９２ － ０． ６６ － ０． ９３ １０． ３９ ４２． ９８ ６３． ７２

３５ ０． ８４ － ０． ４８ － ０． ９１ １０． ３６ ４４． ２４ ６０． ９５

　 　 ＲＣ（ｘ） ＝ ＲＣ１（ｘ） ＋ ＲＣ２（ｘ） ＋ ＲＣ３（ｘ） （４３）
其中 Ｔ ＝ ［ １２． ５，３０，２０ ］ ． 为了不失一般性，假
设成本矩阵 Ｃ 为

Ｃ ＝
０． ５ ０． ０２５ ０． ０２５

０． ０２５ ０． ５ ０． ０２５
０． ０２５ ０． ０２５ ０． ５

é

ë

ê
ê
ê

ù

û

ú
ú
ú

（４４）
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表 ９　 敏感性分析 Ｓｏｂｏｌ 指数

Ｔａｂｌｅ ９ Ｓｏｂｏｌ ｖａｌｕｅｓ ｏｆ ｓｅｎｓｉｔｉｖｉｔｙ ａｎａｌｙｓｉｓ

参数
ＣＭ ＤＭ ＵＭ ＰＭ

ｙ１ ｙ２ ｙ３ ｙ１ ｙ２ ｙ３ ｙ１ ｙ２ ｙ３ ｙ１ ｙ２ ｙ３
ｘ１ ０． ２９８ ０． ５７９ ０． １５４ ０． ２８６ ０． ５７７ ０． １６３ ０． ２８０ ０． ６４３ ０． １６８ ０． ２８９ ０． ５８５ ０． １６７
ｘ２ ０． ２６６ ０． ５９９ ０． ０９８ ０． ２６２ ０． ６２９ ０． １０２ ０． ２６８ ０． ６４３ ０． ０９９ ０． ２７４ ０． ６６２ ０． １０７
ｘ３ ０． ４３７ ０． ２５６ ０． ３３１ ０． ３７６ ０． ２２８ ０． ３４２ ０． ４２１ ０． ２３４ ０． ３３６ ０． ４４４ ０． ２５２ ０． ３５０

其中成本矩阵 Ｃ 中的值也可以由经济成本计

算获得，详见文献［５６］ ． 结合风险成本函数和

质量损失函数，构造双目标优化模型式（３８） ．
然后，利用 ＭＡＴＬＡＢ 工具箱中的多目标遗传算

法进行全局寻优，初始种群规模设置为 ２００，其
余参数保持默认 ． 本文将优化过程重复 ２０ 次，
以分析遗传算法的稳定性和一致性，优化结果

如图 ８ 所示 ． 相较于 ＣＭ 方法和 ＵＭ 方法，ＤＭ
方法和 ＰＭ 方法 ２０ 次优化所得 Ｐａｒｅｔｏ 前沿的

相似度更高，表明它们在优化过程中的稳定性

相对更好 ． 从优化角度看，本文所提方法的

Ｐａｒｅｔｏ前沿总体上更接近理想解，表明其所得

Ｐａｒｅｔｏ 解集较其他方法更优 ． 因此，本文方法获

得了兼顾稳定性和有效性的 Ｐａｒｅｔｏ 解集 ． 为了

进一步对比分析，本文选择与理想解距离最近

的 Ｐａｒｅｔｏ 解为最终的最优解 ． 然后，以 ２０ 次优

化结果的预测偏差均值（预测响应和真实响应

的偏差均值） 、目标偏差均值（真实响应和目标

值之间的距离均值）、质量损失的均值、风险成本

的均值、９５％置信区间（下限 ＣＩＬ 和上限 ＣＩＵ），以
及优化过程运算时间为指标，对比各方法的性能，
结果见表 １０．

（ａ）ＣＭ 方法
　

（ｂ） ＤＭ 方法
　

（ｃ） ＵＭ 方法
　

（ｄ） ＰＭ 方法
　

图 ８　 不同方法的 Ｐａｒｅｔｏ 前沿

Ｆｉｇ． ８ Ｐａｒｅｔｏ ｆｒｏｎｔｓ ｏｆ ｄｉｆｆｅｒｅｎｔ ｍｅｔｈｏｄｓ
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表 １０　 ２０ 次优化结果对比

Ｔａｂｌｅ １０ Ｃｏｍｐａｒｉｓｏｎ ｏｆ ２０ ｏｐｔｉｍｉｚａｔｉｏｎ ｒｅｓｕｌｔｓ

方法 时间
预测偏差均值 目标偏差均值 质量损失 风险成本

ｙ１ ｙ２ ｙ３ ｙ１ ｙ２ ｙ３ 均值 ＣＩＬ ＣＩＵ 均值 ＣＩＬ ＣＩＵ

ＣＭ １８１ ０． １０ ０． ４２ ０． １３ １． ６７ ９． ２５ １６． ３１ １８９． ２３ １８９． １９ １８９． ２８ １６５． １８ １６５． １４ １６５． ２２

ＤＭ １７９ ０． ０７ ０． ５９ ０． ０７ １． ４０ ８． ７４ １６． ６１ １８８． ７２ １８８． ６６ １８８． ７８ １６５． ４１ １６５． ３６ １６５． ４７

ＵＭ １９３ ０． ０２ ０． １４ ０． ０９ １． ４０ ８． ８６ １６． ４７ １８４． ３９ １８４． ３４ １８４． ４４ １６３． １８ １６３． １４ １６３． ２２

ＰＭ １８５ ０． ０９ ０． ０６ ０． ０５ １． ３５ ８． ６２ １６． ４３ １８１． ５５ １８１． ５１ １８１． ５９ １６３． ５７ １６３． ５４ １６３． ６１

　 　 如表 １０ 所示，四种方法 ２０ 次优化的运算时

间相差大不，其中单次优化所需平均时间最少的

是 ＤＭ 方法（１７９ｓ），所需平均时间最多是 ＵＭ 方

法（１９３ｓ）． 表 １０ 中的运算时间表明，四种方法在

参数优化过程中的运算效率几乎相同． 从响应预

测偏差的角度分析，本文所提 ＰＭ 方法获得了响

应 ｙ２ 和 ｙ３ 最小预测偏差均值，故本文方法所得最

优解的响应 ｙ２ 和 ｙ３ 更接近它们的真实值，响应 ｙ１

则距离其真实值相对较远． 从目标偏差均值的角

度分析，ＰＭ 方法的真实响应值 ｙ１ 和 ｙ２ 距离其目

标值更近，这也意味着它们距离失效边界相对较

远，具有较好的稳健性和可靠性． 虽然 ＰＭ 方法响

应 ｙ３ 的目标偏差均值不是所有方法中最小的，但
其与最小值最为接近． 这符合多响应优化的 Ｐａｒｅ⁃
ｔｏ 特性，即可以找到一组折中的最优解，而不是每

个响应都达到最优的状态． 从质量损失的角度分

析，ＰＭ 方法获得了表 １０ 中最小的质量损失均值

（ＱＬ ＝ １８１． ５５），表明本文方法获得了稳健性最佳

的输入参数设置． 从风险成本的角度分析，ＵＭ 方

法获得了最小的失效风险成本均值 （ ＲＣ ＝
１６３. １８），表明该方法获得了可靠性最佳的输入

参数设置． 同时，本文 ＰＭ 方法的风险成本均值为

１６３． ５７，该值与 ＵＭ 方法所得结果非常接近，表明

这两种方法所得最优解在风险成本优化方面的性

能相近，且优于另外两种方法． 此外，为了分析优

化算法的性能，表 １０ 中给出了 ２０ 次优化所得质

量损失和风险成本的 ９５％置信区间． ＰＭ 方法的

质量损失和风险成本的置信区间宽度相对更小，
这表明本文方法的优化过程的稳定性优于其他方

法． 从 Ｐａｒｅｔｏ 性能的角度分析，本文所提 ＰＭ 方法

获得了显著低于其他方法的质量损失均值，同时

获得了与最小风险成本均值几乎相同的结果，这
表明本文方法所得最优解的折中性能优于其他方

法． 综上，本文构建了考虑响应相关性的主动学习

ＭＧＰ 模型，提升了试验点的利用效率，并获得了

更为精确的响应曲面模型和导数预测模型，进而

改善了优化结果的稳健性和可靠性．

５　 讨　 论

相较而言，本文方法在处理多响应的可靠性

稳健设计优化问题时具有一些突出的优势． 首先，
本文方法构建了考虑响应之间相关性的 ＭＧＰ 模

型和偏导数预测模型，改善了输出响应和其导数

值的预测精度，为构建 ＲＢＲＤＯ 模型提供了更为

有效的响应曲面． 其次，本文方法构建了考虑输出

响应和导数预测值的信息矩阵，并采用 ＳＦ 方法改

善了 Ｄ⁃ｏｐｔｉｍａｌ 设计的空间填充性能，进一步提升

了设计点的利用效率和模型的有效性． 最后，本文

方法构建了综合考虑质量损失和风险成本的优化

模型，改善了最优解的稳健性和可靠性． 综上，本
文方法综合考虑了响应之间的相关性、质量损失

以及风险成本对优化结果的影响，提出了基于主

动学习 ＭＧＰ 模型的 ＲＢＲＤＯ 方法，获得了兼顾稳

健性和可靠性的最优解．
本文方法除了具有上述的优点之外，也存在

一些不足之处． 本文方法通过构建协方差矩阵刻

画响应之间的相关性，并通过主动学习策略构建

响应曲面模型，相对复杂的模型结构和试验策略

增加了一定的运算成本，如第 ４ 节所述． 因此，在
处理大量响应（如响应维度增加到 １０ 以上）的优

化问题时，计算效率可能会成为限制本文方法适

用性的关键因素．

６　 结束语

针对产品质量改进中的多响应参数优化问

题，本文综合考虑了质量损失、风险成本以及响应
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之间相关性等因素，结合多输出高斯过程建模技

术、主动学习算法、统计矩理论及多元质量损失函

数，提出了一种具有主动学习能力的多响应可靠

性稳健设计优化方法． 首先，该方法在 ＭＧＰ 模型

中融入统计矩理论，提出一种新的响应曲面建模

方法，实现了偏导数的回归预测． 然后，本文改进

了 ＤＯ 设计准则，构建了主动学习 ＭＧＰ 建模策

略，提升了模型的预测能力． 最后，本文结合质量

损失和风险成本建立 ＲＢＲＤＯ 模型，以权衡优化

结果的稳健性和可靠性，改善了最优输入参数设

置的综合性能． 仿真结果表明，本文方法获得了质

量损失和风险成本之间最佳平衡点，提高了最优

解的稳健性和可靠性．

本文方法有助于权衡多元质量特性之间的关

系，减少过程变异性，从而提升产品质量的一致性

和可靠性． 该方法能有效处理工程实践中试验成

本高、试验周期长、数据样本少等情形下的可靠性

稳健设计优化问题，如航空航天领域、汽车工程领

域、能源与核工程领域、生物医学与医疗工程领域

等． 此外，本文方法还可以应用到其他管理学领域

的预测和优化中，如供应链的多环节优化和项目

管理的多指标优化． 需要指出的是，本文方法在建

模过程中，没有考虑模型参数不确定性因素． 若能

利用贝叶斯方法量化参数不确定性对建模过程的

影响，将能进一步提高优化结果的稳健性和可靠

性． 这将是下一步的主要研究内容．
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